
Bounded Suboptimal Path Planning with Compressed Path Databases

Shizhe Zhao
shizhe.zhao@monash.edu

Monash University

Mattia Chiari
m.chiari017@studenti.unibs.it

University of Brescia

Adi Botea
adibotea@eaton.com

Eaton

Alfonso E. Gerevini
alfonso.gerevini@unibs.it

University of Brescia

Daniel Harabor
daniel.harabor@monash.edu

Monash University

Alessandro Saetti
alessandro.saetti@unibs.it

University of Brescia

Peter J. Stuckey
peter.stuckey@monash.edu

Monash University

Abstract

Compressed Path Databases (CPDs) are a state-of-the-art
method for path planning. They record, for each start posi-
tion, an optimal first move to reach any target position. Com-
puting an optimal path with CPDs is extremely fast and re-
quires no state-space search. The main disadvantages are
overhead related: building a CPD usually involves an all-
pairs precomputation, and storing the result often incurs pro-
hibitive space overheads. Previous research has focused on
reducing the size of CPDs and/or improving their online per-
formance. In this paper we consider a new type of CPD,
which can also dramatically reduce preprocessing times. Our
idea involves computing first-move data for only selected tar-
get nodes; chosen in such a way as to guarantee that the cost
of any extracted path is within a fixed bound of the optimal
solution. Empirical results demonstrate that our new bounded
suboptimal CPDs improve preprocessing times by orders of
magnitude. They further reduce storage costs, and compute
paths more quickly – all in exchange for only a small amount
of suboptimality.

Introduction
Path planning is an important and long studied problem
in AI, and it is a problem which finds applications in dif-
ferent real-world settings such as robotics and computer
games. When the problem appears in practice, it is often
assumed that the input environment can be modelled as a
two-dimensional gridmap that is made up of traversable and
non-traversable cells. Despite significant improvements in
the recent literature, path planning on gridmaps remains an
active area of research. This is demonstrated, for instance,
by the interest shown in the Grid-based Path Planning Com-
petition GPPC (Sturtevant et al. 2015).

A family of techniques known as Compressed Path
Databases (CPDs) (Botea 2011; Botea and Harabor 2013)
represent the state of the art in this area, for speed in com-
puting optimal grid paths and also optimal prefixes (i.e.,
the first several steps of an optimal path). Each CPD is
simply a data structure that tells, for any start location s
and any target location t, which is the optimal first move

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

from s towards t. Finding a shortest path using such a
database is straightforward: simply look up the optimal first
move toward the target and execute that move, repeating
as necessary until the target is reached. Results from the
2014 GPPC (Sturtevant et al. 2015) show that CPDs are
faster than other modern pathfinding approaches on grids,
including Contraction Hierarchies (Geisberger et al. 2008)
and Jump Point Search (Harabor and Grastien 2014). For
shortest paths and prefixes on gridmaps, CPDs are also
known to be faster than Hub Labels (Delling et al. 2014;
Strasser, Harabor, and Botea 2014), a similarly database-
driven technique but one which focuses on shortest distance
queries (cf. shortest path) and which targets road networks.

The principal advantage of CPDs is speed: optimal paths
can be found quickly and without any state-space search.
Furthermore, optimal prefixes can be found faster still. This
feature is important to reduce the first-move lag, where an
agent needs to wait until it knows in which direction to
start moving. By contrast, consider that search-based meth-
ods can only know an optimal prefix once they know the
entire path. The main drawback of CPDs is build cost:
each database requires an all-pairs pre-compute with space
and time being worst-case quadratic in the size of the in-
put graph; i.e., we need to run one Dijkstra search per
node in the graph and then compress and store the result.
Researchers in this area prioritise fast online performance
and for this reason works tend to focus on reducing the
size of the database so that it better fits in working mem-
ory (Strasser, Harabor, and Botea 2014; Salvetti et al. 2017;
Chiari et al. 2019), or they focus on improving the lookup
performance, so that moves can be extracted faster still (Sal-
vetti et al. 2018). These efforts have improved CPD perfor-
mance, for offline storage and online performance, by over
one order of magnitude beyond the 2014 GPPC baseline.
Despite these gains the preprocessing time required to con-
struct each database has not substantially reduced and this
aspect can be prohibitive.

In this paper we consider a new bounded-suboptimal take
on CPDs which dramatically cuts the time required for pre-
computation. The approach can also reduce storage costs
and yield faster online performance – all in exchange for a
small amount of additional cost per extracted path. Our idea

W W W W,E E E E

W W W W,E E E E

W W E E

W W W s E E E

W,SW W,SW SW S SE E,SE E,SE

Figure 1: Optimal moves from the source cell s to each
traversable cell t. Multiple optimal moves can exist in some
cases (e.g., W, E on the top row, middle cell; and E, SE for
the bottom-right cell).

involves selecting from the graph, induced from the input
map, a subset of nodes C, which we call centroids, such that
every node is at most a path distance δ from some centroid
c ∈ C. During precomputation we store first-move data
from every node in the graph to every centroid. The entire
procedure requires at most |C| offline instantiations of Di-
jkstra search. Moreover, the resulting database is sufficient
to determine a bounded suboptimal path, from any node s
to any other node t. We give a theoretical description of the
method and show that, for a given value of δ, the cost of each
extracted path is at most 2δ larger than optimal, with δ being
an input parameter.

In experiments, we test this idea with different δ values
and with different compression schemes. Results on stan-
dard grid benchmarks indicate order-of-magnitude reduc-
tions in preprocessing times, and up to several factors im-
provement in database size and lookup speed. We also show
that, in most cases, the suboptimality cost per path is sub-
stantially smaller than the guaranteed upperbound, and the
relative suboptimality is usually small.

Background

Gridmaps. A gridmap is a two-dimensional data structure
that represents the operating environment for a mobile agent,
such as a robot or a game character. Gridmaps rasterise the
environment into square cells, with each cell being either
traversable or blocked. Each cell has up to 8 neighbours: one
in each of the four cardinal (equiv. straight) directions and
one in each of the four ordinal (equiv. diagonal) directions.

When moving, an agent occupies exactly one traversable
cell at a time and is allowed to step to any other adjacent
traversable cell. Straight moves have a cost of 1, while di-
agonal moves cost

√
2. As in the GPPC, we enforce the

no-corner-cutting rule, which says that diagonal moves are
disallowed if the origin and destination cell share a common
neighbour which is not traversable.

Given a grid cell n, we write n.x and n.y for the x and y
coordinates of that cell. Further, let MV = {N, NE, E, SE,
S, SW, W, NW} be the set of 8 principal compass directions
in which the agent can move. Given a move m ∈ MV and
cell n we define m(n) as the cell n′ where n′.x = n.x +

horiz(m) and n′.y = n.y + vert(m) where

horiz(m) =

{ −1 m ∈ {SW, W, NW}
0 m ∈ {N, S}
+1 m ∈ {NE, E, SE}

vert(m) =

{ −1 m ∈ {NW, N, NE}
0 m ∈ {E, W}
+1 m ∈ {SE, S, SW}

Each gridmap induces an undirected graph where
traversable cells are nodes, and the moves applicable in each
traversable cell are edges. Consider then a weighted graph
G = (V,E) with vertices V and edges E ⊆ V × V , and
a function w such that w(s, t) is the cost of edge (s, t) ∈
E. A path p from s to t in G is a sequence of nodes
[n0, n1, n2, . . . , nk−1, nk], where k ∈ N+, n0 = s, nk = t,
and (ni, ni+1) ∈ E, 0 ≤ i < k. The length of the path is
|p| =

∑k−1
i=0 w(ni, ni+1). The reverse rev(p) of the path

p is the reverse sequence of its nodes. Let sp(s, t) return
a shortest length path in G from s to t, and let symbol ++
denote sequence (and thus also path) concatenation.

Compressed Path Databases (CPDs). A CPD is a data
structure for encoding the first edge or move m on an opti-
mal path, from any node s towards any node t.

For clarity, we start with defining the first-move matrix,
a square two-dimensional array that stores optimal moves
from every start to every target. The size of a first-move
matrix quickly becomes prohibitive, being quadratic in the
number of (traversable) cells.

A CPD is obtained by compressing the first-move ma-
trix. Previous work compresses CPDs row by row. CPDs
are constructed offline in a preprocessing phase that requires
repeated iterations of Dijkstra search: one per graph node.
With only slight modifications, this algorithm can be used
to compute T (s), the first-move row (of the matrix) cor-
responding to the start node s, which records all optimal
first moves, from the source node s to any reachable target
t. Once computed, T (s) is compressed and stored, which
concludes the iteration at hand. The compression is based
on run-length encoding (RLE) (Strasser, Harabor, and Botea
2014). See Examples 1 and 2 for an illustration. As they are
independent, distinct Dijkstra iterations can be run in paral-
lel, with a speed-up linear in the number of processors.

Example 1 RLE compresses a string of symbols by repre-
senting more compactly substrings, called runs, consisting
of repetitions of the same symbol. E.g., the substring W;
W; W; (W,E); E; E; E (the first row in Figure 1) can have
two runs, namely WWWW, and EEE. We replace each such
run by a pair of values: one value indicates the starting in-
dex (where the run begins) and the other value stores the
associated symbol. With RLE the example substring can be
represented more efficiently as 1W; 5E. �

Example 2 Consider the gridmap shown in Figure 1. As-
sume for simplicity that we order all grid cells as one single
string, traversing each row from the left to the right and go-
ing row by row from the top to the bottom. We call this

Algorithm 1: Function cpd(s, t) extracts at runtime
an optimal path from the node s to the node t.

1 p← [s]
2 while s 6= t do
3 m← ∅
4 if t is in the proximity square of s then
5 m← Fx(s, t)

6 else
7 m← FirstMove(s, t)
8 if m = h© then
9 m← Fx(s, t)

10 p← p++ [m(s)]
11 s← m(s)

12 return p

the left-right-top-bottom ordering. The entire string is com-
pressed into 11 runs: 1W 5E 8W 12E 15W 20E 22W 26E
29SW 32S 33SE. Obstacle cells and the source are assigned
wildcard symbols “∗”; i.e., “don’t care” symbols, because
we never need to look up a move from s to any of these.
Storing all optimal moves towards a given target (e.g., E and
SE for each of the last two cells at the bottom) improves run-
length compression, since we can choose the symbol that
would result in fewer runs (e.g., SE in that case).

The CPD size can further be reduced by replacing the
left-right-top-bottom scheme with a different cell ordering.
In experiments, we use the state-of-the-art DFS ordering
heuristic (Strasser, Harabor, and Botea 2014). �

With a CPD in hand, we may begin the online phase of
the algorithm. Here the objective is to compute an optimal
path cpd(s, t) or prefixes for any given start-target pair (s, t)
(equiv. instance). We denote as FirstMove(s,t) the function
which returns an optimal first move from s to t. The imple-
mentation of this function requires a simple binary search
through a compressed string of symbols representing the
first-move row T (s) (Strasser, Harabor, and Botea 2014).
The function can be used to extract entire optimal paths or
optimal prefixes of any given size. Algorithm 1 illustrates
the extraction of optimal paths. The method relies on two
recent optimisations (Chiari et al. 2019) which are known to
improve efficiency: Heuristic Moves and Proximity Wild-
cards. We describe these next.

Heuristic Moves. When pathfinding on a gridmap the first
move from s to t is often the “obvious move”; e.g., the move
that heads directly towards the target or the one suggested
by some “default” heuristic function Fx(s, t). We can add
an extra “redundant” symbol h© in cells where the default
move is an optimal move, after the completion of Dijkstra
search but before compression with RLE. These additional
symbols, sometimes called h-moves, can be added to the first
move table in linear time and they significantly improve the
efficiency of CPDs; i.e. they help to reduce the total size of
the database with no negative impact on query performance.

E.g., by using the default heuristic function proposed by
Chiari et al. (2019), the string of symbols shown in Figure 1
can be compressed into 1 h©. That is, the entire compressed
string has only 1 run, which is substantially shorter than op-
tions discussed in Example 2.

Exploiting h-moves during the online stage requires only
a small modification to the standard path retrieval function:
after extracting a h© symbol from the CPD, we apply the
move suggested by the default heuristic function. Note that
h© symbols are applicable (i.e., added to the first move ta-

ble) only if the default heuristic returns just one possible
move from s to t. Our implementation is based on Chiari
et al.’s (2019) algorithm and uses the same heuristic.

Proximity Wildcards. Chiari et al. (2019) introduce a fur-
ther use of heuristic moves. They compute the largest square
around the start position s where all moves can be h©, and
store its size for each s. Before extracting a first move they
check whether the target is within the square. If so, they
simply apply the heuristic move. This speeds up the path
extraction and reduces the size of the database.

Bounded Path Finding using Centroids
For some application settings, the space and time required to
build a CPD could be considered too large. To address such
situations, we propose to compute and compress first-move
data for only a subset of grid nodes C, called centroids.

We associate a nearest centroid c(t) ∈ C for every grid
node t. Then, a path from any s to any t, which we call a
centroid path (cp for short), can be built as:

cp(s, t) = cpd(s, c(t))++rev(cpd(t, c(t)).

We can do better by joining the two paths at the first common
point p, which may be different from c(t):

cp(s, t) = [n |n ∈ cpd(s, c(t)), n 6∈ cpd(t, c(t))]
++[p]
++[n |n ∈ rev(cpd(t, c(t)), n 6∈ cpd(s, c(t))].

Given we have chosen centroids so that no target t is more
than δ from its centroid c(t), we can show that the centroid
path is never longer than 2δ than the optimal path.
Theorem 1. If |sp(t, c(t)| ≤ δ for all t in V , then
|cp(s, t)| ≤ |sp(s, t)|+ 2δ.

Proof. Assume by contradiction that |cp(s, t)| >
|sp(s, t)|+ 2δ. CPD paths cpd(s, c(t)) and cpd(t, c(t)) are
optimal, and hence |sp(s, c(t)| + |sp(t, c(t)| ≥ |cp(s, t)|.
We have that δ ≥ |sp(t, c(t)|, as assumed in the theorem.
Thus, the path sp(s, t)++sp(t, c(t)), from s to c(t), has
a length of at most |sp(s, t)| + δ. This further leads to
|sp(s, t)| + δ ≥ |sp(s, t)++sp(t, c(t))| ≥ |sp(s, c(t))|.
Combining these, we have:

|sp(s, c(t)|+ |sp(t, c(t)| ≥ |cp(s, t)|
> |sp(s, t)|+ 2δ

≥ |sp(s, c(t))|+ δ

≥ |sp(s, c(t))|+ |sp(t, c(t)|
Contradiction.

A g g g g h h H

G g g h h
g g C h

i i g j j j h

I i j J j

i i B j j j

f j e D

f f e e e

F f f e e e E

Figure 2: Centroid marking for a grid map with δ = 3. A,
B, C and D are centroids in the first stage, regions explored
from them are filled with green dots (A), blue vertical lines
(B), red bricks (C) and yellow starts (D). Centroids E–J are
created in the second stage, and their corresponding regions
are shown with lowercase letters.

Building Centroids
We propose the following algorithm which guarantees that
there may be at most 2|V |

δ centroids in each connected com-
ponent, where |V | is the number of traversable cells in the
component. The algorithm (Algorithm 2) has two stages:
the first stage makes the distance of the furthest node to a
centroid in [δ, 2δ]; the second stage makes the distance of
the furthest node to a centroid lower than or equal to δ. To
achieve this, we prioritize grid nodes based on two criteria:
• dc: the shortest distance to the nearest centroid, which are
∞ at the beginning and get updates during the algorithm.

• do: the shortest distance to the nearest obstacle, which can
be precomputed by flood-fill.

In the first stage, we keep selecting node which dc > 2δ,
with minimum do, and minimum dc if there is a tie. For each
selected node v, we run a Dijkstra search to explore neigh-
bors of v within 2δ + 1 and update their dc. In the second
stage, we keep selecting node which dc > δ, with maximum
dc, and minimum do if there is a tie. For each selected node
v, similarly to the first stage, we run a Dijkstra search to ex-
plore the neighbors of v within δ and update their dc. Notice
that, in the first stage, selecting the node with a minimum
do is to choose centroids from the “border” to the “center”
of the gridmap; selecting the node with a minimum dc is to
make a new centroid around the existing centroid regions.
The motivation for such a strategy is to make more border
cells covered by centroids in the first stage. We recognize
there can be many other ways of selecting centroids. For
this work, we choose this strategy as an our preliminary in-
vestigation showed that it performs well.
Theorem 2. Assume that the gridmap induces a graph with
only one connected component, and let |V | be the number of
traversable cells where |V | � δ, then Algorithm 2 creates
at most 2|V |

δ centroids.

Algorithm 2: Centroid creation Centroids(V ,G)
given a graph (V,G).

1 Calculate do[v], the shortest distance from vertex v to
an obstacle by flood fill in;

2 dc[v]←∞, v ∈ V ;
3 c[v]← ⊥, v ∈ V ;
4 Q← V ;
5 while Q 6= ∅ do
6 v ← argmin{(do[v], dc[v])|v ∈ Q};
7 Q← Q− {v};
8 if dc[v] > 2δ then
9 for v′ ∈ V where d = |sp(v, v′)| ≤ 2δ+1 do

10 if d < dc[v
′] then

11 dc[v
′]← d;

12 if d ≤ δ then
13 c[v′]← v

14 Q← V ;
15 while Q 6= ∅ do
16 v ← argmax{(dc[v],−do[v])|v ∈ Q};
17 Q← Q− {v};
18 if dc[v] > δ then
19 for v′ ∈ V where d = |sp(v, v′)| ≤ δ do
20 if d < dc[v

′] then
21 dc[v

′]← d;
22 c[v′]← v

Proof. After the second stage, the distance between any pair
of centroids is greater than δ (algorithm 2 line 18), thus for
a given centroid c, all nodes d(v, c) ≤ δ

2 must belong to c,
because if a node v is reassigned to c, c must be the near-
est centroid to v (algorithm 2 line 20). Take a node v over
the bound of the area covered by c that d(v, c) ≥ δ

2 ; if the
sp(v, c) formed by only straight moves then there are at least
δ
2 nodes covered by c; otherwise, each diagonal move on the
shortest path implies that there are 3 nodes covered by c as
corner-cutting is not allowed, then even more. Thus each
centroid covers at least δ

2 nodes, so that there are at most
2|V |
δ centroids.

Building centroid CPDs With the marking complete, we
next compute a first-move matrix: from each grid node v
to each centroid c ∈ C. A main objective is to reduce the
number of Dijkstra searches from |V | to |C|.

In the Dijkstra search for a node c ∈ C, c plays the role
of a target. The challenge is to still be able compute forward
moves from every node v towards c. On undirected graphs,
which is the case with our gridmaps, this can be achieved
with only small adjustments to Dijkstra’s algorithm, in a
fashion also used by Verzeletti, Botea, and Zanella (2019).

With this change in use, now we compute the first-move
matrix in a column-by-column fashion, with all rows grow-
ing gradually. To avoid storing the full first-move matrix in
memory, we compress each row on the fly: once a Dijkstra

search is done, we extend each row with the corresponding
set of optimal moves, and decide whether we can continue
with the current RLE run, or start building a new one. The
result is equivalent to building the uncompressed row and
then compressing it.

Reverse Compressed Path Databases
A standard CPD compresses first-move matrix rows (i.e., an
array of moves from one source to many targets). We call
this forward compression. In this section we introduce CPDs
that compress columns (i.e., arrays with moves from many
sources to one target). We call these reverse CPDs, and their
introduction is motivated as follows. We will show that re-
verse CPDs can achieve better size savings than the forward
ones for certain (but not all) δ values. We will further show
that reverse CPDs return moves faster, due to a combina-
tion of better caching and the ability to return several moves
with a single lookup. Both forward and reverse CPDs enjoy
a dramatic cut in the preprocessing time, as δ grows.

Reverse CPDs are compatible with recent space-saving
improvements such as heuristic moves and proximity wild-
cards (Chiari et al. 2019).

Example 3 Figure 3 shows reverse first-move data that we
compress to 1S 3SW 5SE 6S 10W 12E 13S 15SW 16S 21SE
22E 26W 29NE 32N 33NW, which is 15 runs. Our encod-
ing assumes a left-right-top-bottom cell ordering. Adding
h-moves reduces this to 1S 3SW 5SE 6S 10W 12E 13 h©,
which is 7 runs. For comparison, in the forward direction
the first-move data for source t can be encoded with just a
single run: 1 h©. �

“Illegal” Moves
We can improve the run length encoding of reverse CPDs by
also allowing “illegal” moves to be part of the set of possible
moves, which are useful if they can be unambiguously de-
coded by some function to extract a correct optimal move.
A move from s is “illegal” if: (a) the move is cut by a corner
or the reached node is an obstacle (see Example 4); (b) the
reached node has the same set of successors as s, except s
itself (see Example 5).

Example 4 Figure 4 shows reverse first-move data where S
moves appear as the only symbols of three cells in column
3. These symbols force us to create one additional run per
row. To improve compression we will store at each of these
locations an additional symbol, SW, which can be used to
reduce the database by three runs. Although following this
move produces an obstacle, we can still proceed if we de-
tect the situation at runtime. To decode the SW symbol we
choose the closest move to SW which is not blocked: here,
S. The definition of “illegal” move guarantees that our de-
coding function always returns an optimal first move. �

Example 5 Consider the example in Figure 5. We show a
reverse first-move table which already includes some “ille-
gal” moves; i.e., those that produce obstacles and which can
be appropriately decoded. Further compression here is ham-
pered by the two tiles with SE-only moves. Notice however
that, while the S move from each of these locations is valid,

it is not helpful. The only reason to apply move S from these
positions is to reach the cell directly below and no other.
If we identify such unhelpful moves at compression time,
we can add S to the set of symbols for the currently SE-only
tiles. When extracted at runtime, the “illegal” move S can be
decoded to SE. With this enhancement the table compresses
into 2 runs: 1S 18W. �

Preprocessing and Path Extraction
As explained earlier, building a reverse CPD for target t can
be performed by a single Dijsktra search from the target and
recording for each grid node s all best moves for reaching t.
The resulting string of moves (column in the first-move ma-
trix) is compressed with RLE. In the experimental section,
we will show that build times for reverse CPDs and forward
CPDs using the same set of centroids C are similar.

Algorithm 3 gives a modified version of FirstMove(s, t)
for reverse CPDs which decodes both “illegal” and h-moves.
This algorithm extracts a first move m as usual, and, if m is
not legal, it finds the closest move that is legal and returns
that instead. Function legal(m, s, t) returns false if moving
in direction m from s (i) leads to a blocked square, or (ii)
cuts a corner, or (iii) moves to a position m(s) 6= t where
all successors are better reached directly from s. In all other
cases legal(m, s, t) returns true . Function closest(m,S)
returns the closest move to m in set S breaking ties by
moving clockwise, e.g., closest(SW, {N,NE,E}) = N and
closest(S, {N,NE,E}) = E. Note that forward CPDs can
also store “illegal” moves, but only get a slight improve-
ment.

Heuristic Path Extraction
Paths extracted with centroid CPDs, whether forward or re-
verse, can experience a pathological worst-case where the
cost of the 2δ suboptimal detour can be substantially larger
than the cost of the optimal path. Such cases occur when the
start and target position are (i) in close proximity; (ii) when
there exist multiple paths from s to the centroid c(t) and;
(iii) when the CPD stores the bad direction from s to c(t)
for a specific and pathological choice of t. Figure 6 gives an
example. Notice that the relative suboptimality can be large
in a relative sense but it is also local to the centroid. Thus
we can often improve the path computation by trying a di-
rect heuristic path, from the current node to the target, when
we arrive close to the centroid. Our approach is as follows.

When the current position p in the path has the same cen-
troid as the target c(p) = c(t) we check whether following
the default heuristic function Fx(p, t) repeatedly leads us to
the target, and instead use this path. For the example of Fig-
ure 6 starting from s and following the moves derived from
the CPD we hit the region of centroid c(t) at position p and
find the direct path straight west to the target. We extract the
direct path of length 2 by omitting overlapping paths from s
to p and back.

Experiments
We run experiments on maps from the GPPC 2012 bench-
marks (Sturtevant 2012), including 105 game maps and 6 ar-

S,SE S SW SW,SE SE S S,SW

S,SE S W W,E E S S,SW

SE S S SW

E E E t W W W
E,NE E,NE NE N NWW,NWW,NW

Figure 3: Optimal first moves from
each grid cell to the cell marked t.
Moves in bold agree with the default
heuristic.

t S S,SW S,SW SW

N S S,SW SW W,SW

N S SW W,SW W,SW

N W W W W W

Figure 4: Optimal first moves from
each grid cell to the cell marked t.
Moves in bold agree with the default
heuristic.

SE S,SE S
S,SE,

E
SE S
S,SE,

E
S

S,SW

t W,NWW,NWW,NW

Figure 5: Optimal first moves toward the
grid cell t with added “illegal” move sym-
bols for cells adjacent to obstacles.

c(t)

t s p

Figure 6: Worst case suboptimality for δ = 6: the symbol
stored for FirstMove(s,c(t)) is E rather than the equivalent
W. The path found from s to t is length 14 rather than 2.

tificial maps - 2 out of 9 maps each in mazes, rooms, random.
Although all forward CPDs and most of reverse-centroid
CPDs work on the rest of the 21 artificial maps, for small
values of δ the size of the reverse CPD can be prohibitively
large for these adversarial environments. To avoid deal-
ing with missing values we choose to exclude these maps.
All algorithms are implemented in C++1 and compiled with
-O3 flag. We use the following abbreviations for conve-
nience:

• fwdδ: forward CPD with centroid size δ

• revδ: reverse CPD with centroid size δ.

Note that δ = 0 means the full forward or reverse CPDs. Our
principal point of comparison in all experiments is fwd0.
This variant includes the techniques in (Chiari et al. 2019)
and represents the current state-of-the-art for CPDs, both
for online performance and also offline storage costs. Our
implementations builds directly on this baseline using code
from the original authors. Like the previous work we em-
ploy proximity wildcards for all forward CPDs. For reverse
CPDs we exclude this feature as we found that it does not
lead to substantial improvement in compression. Our test
machine is Linux 4.19.45-1-MANJARO with i5-8600
CPU @ 3.10GHz CPU and 15GB memory.

Experiment 1: Preprocessing Massive preprocessing-
time improvements are observed on all maps, compared to
previous work, which has been limited to full CPDs. For
example, Table 1 shows, for 5 representative maps, prepro-
cessing and size statistics. Using centroids reduces the CPD

1https://github.com/eggeek/CPD-Hsymbol-Wildcard

Algorithm 3: Function FirstMover(s, t) for reverse
CPDs with h-moves and “illegal” moves.

1 m← FirstMove(s,t)
2 if m = h© then
3 m = Fx(s, t)

4 if ¬legal(m, s, t) then
5 m = closest(m, {mv|mv ∈MV, legal(mv, s, t)})
6 return m

construction time by up to three orders of magnitude (i.e. the
number of centroids is up to thousands of times smaller than
the number of cells in a full CPD). For a fixed δ, the prepro-
cessing time is similar for forward and reverse CPDs since
both are dominated by the Dijkstra search time. Forward
CPDs are built slightly faster, as they skip “illegal” move
processing. The savings are achieved due to the fact that the
preprocessing time is proportional to the number of Dijkstra
searches, which is equal to the number of centroids.

Experiment 2: CPD Size Assume that |V | is the num-
ber of cells and |C| is the number of centroids. A forward
CPD starts from a competitive size but its size decreases at a
moderate pace (smaller than linear) as the number of cen-
troids decreases. The reason is that we always have |V |
compressed strings (rows) in a forward CPD, independent
of |C|. Each compressed string compresses a row of length
|C|. Rows in a full CPD compress well (much better than
columns), and cutting symbols from a row that compresses
well anyway has a moderate impact on further size reduc-
tions. By contrast, a reverse CPD starts from a much larger
size (as columns compress more poorly than rows), but it de-
creases more aggressively, at a linear pace with the number
of centroids. This is because a reverse CPD has exactly |C|
compressed strings (columns). Often, a reverse CPD gets
smaller than a forward CPD as δ increases.

The interplay of these factors is shown in Figure 7, which
shows a summary of size comparison. For δ ≥ 8 the size
of fwdδ and also revδ improves on fwd0 in a large major-
ity of cases. There are however 5 small game maps where
fwd64 CPDs are larger than fwd0, and there are 2 large arti-

δ 0 2 4 8 16 32 64

map stat F R F R F R F R F R F R F R

Aurora C 493772 93346 22078 6777 2278 837 372
T 551.38 576.07 104.24 108.90 24.65 25.76 7.57 7.91 2.54 2.66 0.93 0.98 0.42 0.43
M 341.81 10015.22 320.08 1892.17 225.17 448.44 123.01 139.63 72.66 48.88 51.66 19.90 40.20 10.54

orz103d C 40392 7977 2134 759 287 105 44
T 2.02 2.02 0.40 0.40 0.11 0.11 0.04 0.04 0.01 0.01 0.01 0.01 0.00 0.00
M 1.40 176.16 1.51 35.22 1.42 9.78 1.37 3.79 1.32 1.74 1.27 0.94 1.24 0.68

maze-400-4 C 127996 24526 7899 3687 1443 607 257
T 17.26 24.16 5.40 7.56 2.00 2.80 0.75 1.05 0.26 0.37 0.08 0.11 0.02 0.02
M 4.10 3862.07 4.52 741.37 4.35 239.81 4.23 112.76 4.05 45.07 3.91 19.85 3.81 9.29

room-400-40 C 152811 27480 6524 2111 615 190 55
T 43.30 45.84 7.79 8.24 1.85 1.96 0.60 0.63 0.17 0.18 0.05 0.06 0.02 0.02
M 74.24 2149.96 69.40 388.23 44.11 93.68 25.64 31.46 15.17 10.38 10.31 4.43 7.70 2.60

random-400-33 C 103535 32381 12019 4515 1566 456 105
T 17.26 24.16 5.40 7.56 2.00 2.80 0.75 1.05 0.26 0.37 0.08 0.11 0.02 0.02
M 40.77 5208.14 34.21 1629.89 27.40 605.78 21.19 228.36 15.14 80.01 9.52 24.19 5.66 6.52

Table 1: Number of (C)entroids, building (T)ime in minutes, and (M)emory requirements in MB for (F)orward and improved
(R)everse CPDs for different radii δ on five representative maps. For δ = 0, C is the number of cells in the map.

2 4 8 16 32 64
δ

20

40

60

80

100

109

1
1
1

M
a
p
s

|fwdδ| < |fwd0|

|revδ| < |fwd0|

|revδ| < |fwdδ|

Figure 7: We show 3 comparisons: |fwdδ| v.s. |fwd0| (the
green-dot line), |revδ| v.s. |fwd0| (the blue-square line), and
|revδ| v.s. |fwdδ| (the yellow-cross line); each line shows the
number of maps with smaller CPD when δ increase.

ficial maps where rev64 CPDs are larger than fwd0. Notice
however that revδ outperforms fwdδ on more than half of all
maps when δ = 8 and compression improves further beyond
this point. Table 2 shows in more detail how much size re-
duction centroid CPDs can achieve – revδ (resp. fwdδ) can
be up to 32.43x (resp. 9.65x) smaller than fwd0.

Illegal moves: We can additionally report (not in Ta-
ble 1) that without illegal move encoding, reverse CPDs
can be 1.5x larger for maps such as room-400-40 and
maze-400-4. For game maps, illegal moves provide even
more benefit – up to a factor of 3x vs. no illegal moves.

Trade-offs: We have seen that as δ increases, the
forward-CPD size reduction is often limited, while the re-
duction in size of reverse CPDs is proportional to the reduc-
tion in the number of centroids. This introduces a tradeoff
as δ grows: the smaller the CPD the looser the guarantee. In
the remaining experiments we focus on this tradeoff and re-
strict our attention to δ ≥ 16 where both forward and reverse
CPDs improve on fwd0 across almost all maps and where we
construct corresponding databases of the smallest size.

δ type mean min 25% 50% 75% max

2 rev 0.33 0.01 0.12 0.20 0.35 1.57
fwd 0.97 0.85 0.93 0.98 1.01 1.19

4 rev 0.82 0.02 0.45 0.72 1.05 2.34
fwd 1.13 0.85 1.02 1.12 1.24 1.68

8 rev 1.54 0.04 1.13 1.56 1.99 3.45
fwd 1.34 0.86 1.08 1.27 1.56 2.90

16 rev 2.59 0.09 1.87 2.48 3.12 7.39
fwd 1.60 0.86 1.14 1.36 1.86 4.90

32 rev 3.81 0.21 2.39 3.18 4.16 17.88
fwd 1.84 0.87 1.19 1.42 2.10 7.20

64 rev 4.93 0.44 2.70 3.64 5.12 32.43
fwd 2.08 0.87 1.24 1.50 2.21 9.65

Table 2: CPD size reduction between centroid CPDs and
fwd0, ratio = |fwd0|

|revδ| or |fwd0||fwdδ| .

Experiment 3: Path Extraction. Reverse CPDs have a
runtime advantage due to memory caching as follows. To
extract a path, reverse CPDs require only a single com-
pressed string: the one computed for the target t. Once this
string is loaded into CPU cache, it resides there throughout
the entirety of path extraction. In contrast, forward CPDs
require a different compressed string for each move, and ex-
tracting each move incurs the possibility of a cache miss.

The second runtime advantage is that we can extract the
entire run from a reverse CPD rather than just a single move.
That means we can avoid additional extractions if the first
move of next location m(s) is compressed in the same run
as s. This behavior is surprisingly frequent due to the row
ordering. On average, rev0 performs just 20% of extractions
needed by fwd0, i.e., each extracted run is used 5 times.

Table 3 examines the efficiency of forward and reverse
CPDs (δ = 16, 32, 64) for path extraction. Here we compare
against fwd0 as well as two other suboptimal approaches,
each with characteristics similar to our work:
• TC: Tree Cache (Anderson 2012), a very fast unbounded-

suboptimal algorithm based on spanning trees. We com-
pare against this method because like our work path ex-
traction is implemented as a series of recursive lookups.
TC was the fastest suboptimal algorithm at GPPC 2014.

mean min 25% 50% 75% max

rev16 1.839 0.061 1.311 1.747 2.162 235.606
rev32 1.738 0.031 1.194 1.666 2.091 229.882
rev64 1.580 0.008 0.998 1.490 1.953 207.992
fwd16 1.209 0.013 1.038 1.125 1.312 175.824
fwd32 1.233 0.033 1.041 1.144 1.355 163.937
fwd64 1.230 0.012 1.013 1.139 1.389 184.361
FS32 0.037 0.000 0.001 0.002 0.025 18.451
FS64 0.039 0.000 0.000 0.001 0.047 17.233
FS128 0.041 0.000 0.000 0.002 0.051 17.431
TC 6.951 0.009 4.570 5.961 8.170 949.790

Table 3: Speedup as path extraction time divided by fwd0
path extraction time. A value larger than 1 means faster.

• FSδ2 : FOCAL Search (Pearl and Kim 1982), a bounded-
suboptimal variant of A∗. Usually it is implemented with
a relative suboptimality bound; i.e. the path returned is
guaranteed to be no larger than some multiplicative factor
w ≥ 1. Here we adapt FOCAL search to compute solu-
tions that are no more than an additive constant factor 2δ
from optimal. This allows us to compare CPD solution
quality against a competitor with equivalent guarantees.

We run each algorithm on all 105 game maps. We have
142,534 instances in total and we solve each one 5 times,
taking the mean to eliminate random noise. Table 3 gives
a summary of results, relative to fwd0. Both forward and
reverse CPDs benefit from improved cache locality due to
smaller CPD size and, both improve baseline performance.
The largest gains are observed for reverse CPDs, which can
be almost two times faster for path extraction. The speedup
decreases as the compression increases due to overheads
from checking the heuristic direct path. Note that only a few
factors separate CPDs and Tree Cache. TC can be under-
stood as a performance lowerbound for CPD-like methods
since the cost of path extraction for TC is only one mem-
ory operation per step. Unsurprisingly, any form of CPD is
orders of magnitude faster than state-space FOCAL search.

Experiment 4: Suboptimality and Path Quality. We
evaluate the (absolute) suboptimality of a path as diff = l−o,
that is, the length of the extracted path l minus the length
of an optimal path o. Similarly, we evaluate the (relative)
quality of a path as diff

o . Table 4 and Table 5 shows sum-
maries of path suboptimality and path quality for differ-
ent approaches. We observe that both suboptimality and
quality for the unbounded-suboptimal approach TC are pro-
hibitively large. Meanhwhile reverse CPD paths have better
suboptimality and better quality than FS for most queries,
but FS performs better in the worst case.

Heuristic Extraction: We can further report that, with-
out heuristic path extraction, the worst case behavior (as
in Figure 6) can result in slightly faster path extraction but
worse path quality: without this addition the mean increase
for diff is approximately around δ/3.

Overall: Based on results above, it is clear that revδ
(δ ≥ 16) are better for path extraction in terms of trade-
off between suboptimality and extraction time. Each of our
nearest competitors suffers from significant drawbacks, ei-
ther in terms of a large and unbounded suboptimality (Tree

mean 25% 50% 75% 99% max

rev16 0.88 0.00 0.00 1.17 7.41 26.00
FS32 2.52 0.00 0.00 2.34 26.08 31.98
rev32 1.55 0.00 0.00 1.66 16.68 54.59
FS64 5.95 0.00 0.82 8.14 46.54 63.99
rev64 4.38 0.00 0.00 3.51 50.65 113.40
FS128 13.22 0.00 4.97 19.74 82.04 127.99
TC 143.10 18.97 46.53 138.12 1644.88 3194.47

Table 4: Suboptimality comparison (absolute difference).

mean 25% 50% 75% 99% max

rev16 0.01 0.00 0.00 0.00 0.08 1.95
FS32 0.01 0.00 0.00 0.01 0.15 0.79
rev32 0.01 0.00 0.00 0.00 0.15 6.04
FS64 0.03 0.00 0.00 0.03 0.20 0.95
rev64 0.03 0.00 0.00 0.01 0.50 8.77
FS128 0.04 0.00 0.02 0.07 0.26 2.40
TC 0.83 0.06 0.18 0.53 8.62 2005.07

Table 5: Quality comparison (relative difference).

Cache) or a much slower path extraction (FOCAL Search).

Discussion
At a high level, centroid CPDs precompute information for a
subset of nodes to improve path planning; such an idea also
appears in Landmark (Goldberg and Harrelson 2004). How-
ever, they are very different in terms of the algorithm: (i)
Landmarks improve path planning search by providing im-
proved heuristic estimates, while CPDs are search-free path
planning techniques that do not depend on heuristics; (ii)
Landmark nodes usually do not appear on computed paths
while in our case the target centroid almost always appears
on computed paths. Recent work (Bono et al. 2019) shows
CPDs can be used to derive heuristic estimates in dynamic
graphs. This work compares CPD heuristics vs. Landmarks
and shows that CPDs offer substantial advantages.

Conclusion and Future Work
CPDs provide a state-of-the-art solution for path planning,
but they may be unattractive because of substantial over-
head required to construct and store them. In this paper,
we explore the use of bounded suboptimal CPDs based on
centroids, that massively reduces the precomputation time.
We apply the idea to both standard forward CPDs and to
the reverse CPDs that we introduce in this work. As the
number of centroids decreases, reverse CPDs shrink more
aggressively, eventually overtaking forward CPDs in terms
of size reduction. Our approach leads to faster path extrac-
tion than forward CPDs and, in practice, to a much smaller
difference in path length than the suboptimality bound guar-
antees. Results show an excellent speed vs suboptimality
tradeoff compared to other techniques from the literature.

In future work, we plan to improve the compression of re-
verse CPDs with new types of heuristic symbols. Bounded
suboptimal reverse CPDs could also be used as an admissi-
ble heuristic in search, for an anytime behavior, in a manner
related to recent work that uses standard CPDs for a similar
purpose (Bono et al. 2019).

References
Anderson, K. 2012. Tree cache. In Proceedings of the 5th
Annual Symposium on Combinatorial Search (SoCS). Nia-
gara Falls, Ontario, Canada: AAAI Press.
Bono, M.; Gerevini, A. E.; Harabor, D. D.; and Stuckey, P. J.
2019. Path planning with CPD heuristics. In Proceedings of
the Twenty-Eighth International Joint Conference on Artifi-
cial Intelligence, IJCAI-19, 1199–1205. International Joint
Conferences on Artificial Intelligence Organization.
Botea, A., and Harabor, D. 2013. Path planning with com-
pressed all-pairs shortest paths data. In Proceedings of the
23rd International Conference on Automated Planning and
Scheduling, 293–297. AAAI Press.
Botea, A. 2011. Ultra-fast optimal pathfinding without run-
time search. In Proceedings of the 7th AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment
(AIIDE), 122–127.
Chiari, M.; Zhao, S.; Botea, A.; Gerevini, A.; Harabor, D.;
Saetti, A.; Salvetti, M.; and Stuckey, P. J. 2019. Cutting
the size of compressed path databases with wildcards and
redundant symbols. In Lipovetzky, N.; Onaindia, E.; and
Smith, D., eds., Proceedings of the 29th International Con-
ference on Automated Planning and Scheduling, 106–113.
AAAI Press.
Delling, D.; Goldberg, A. V.; Pajor, T.; and Werneck, R. F.
2014. Robust distance queries on massive networks. In Pro-
ceedings of the 22nd Annual European Symposium on Algo-
rithms (ESA’14), volume 8737 of Lecture Notes in Computer
Science, 321–333. Springer.
Geisberger, R.; Sanders, P.; Schultes, D.; and Delling, D.
2008. Contraction hierarchies: Faster and simpler hierarchi-
cal routing in road networks. In WEA, 319–333. Springer.
Goldberg, A. V., and Harrelson, C. 2004. Computing the
shortest path: A* search meets graph theory. Technical Re-
port MSR-TR-200, Microsoft Research.
Harabor, D. D., and Grastien, A. 2014. Improving Jump
Point Search. In Proceedings of the International Confer-
ence on Automated Planning and Scheduling (ICAPS), 128–
135.
Pearl, J., and Kim, J. H. 1982. Studies in semi-
admissible heuristics. IEEE Trans. Pattern Anal. Mach. In-
tell. 4(4):392–399.
Salvetti, M.; Botea, A.; Saetti, A.; and Gerevini, A. E.
2017. Compressed path databases with ordered wildcard
substitutions. In Proceedings of the Twenty-Seventh Interna-
tional Conference on Automated Planning and Scheduling,
(ICAPS-17), 250–258.
Salvetti, M.; Botea, A.; Gerevini, A. E.; Harabor, D.; and
Saetti, A. 2018. Two-oracle optimal path planning on
grid maps. In Proceedings of the Twenty-Eighth Interna-
tional Conference on Automated Planning and Scheduling,
(ICAPS-18), 227–231.
Strasser, B.; Harabor, D.; and Botea, A. 2014. Fast First-
Move Queries through Run Length Encoding. In Proceed-
ings of the Seventh Annual Symposium on Combinatorial
Search (SOCS-14), 157–165.

Sturtevant, N. R.; Traish, J. M.; Tulip, J. R.; Uras, T.;
Koenig, S.; Strasser, B.; Botea, A.; Harabor, D.; and Rabin,
S. 2015. The grid-based path planning competition: 2014
entries and results. In Proceedings of the Eighth Annual
Symposium on Combinatorial Search (SOCS-15), 241–251.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144–148.
Verzeletti, M.; Botea, A.; and Zanella, M. 2019. Repairing
compressed path databases on maps with dynamic changes.
In Proceedings of the Twelfth International Symposium on
Combinatorial Search, SOCS 2019, Napa, California, 16-
17 July 2019, 115–124.

