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Abstract
We consider optimal and anytime algorithms for
the Euclidean Shortest Path Problem (ESPP) in two
dimensions. Our approach leverages ideas from
two recent works: Polyanya, a mesh-based ESPP
planner which we use to represent and reason about
the environment, and Compressed Path Databases,
a speedup technique for pathfinding on grids and
spatial networks, which we exploit to compute fast
candidate paths. In a range of experiments and
empirical comparisons we show that: (i) the aux-
iliary data structures required by the new method
are cheap to build and store; (ii) for optimal search,
the new algorithm is faster than a range of recent
ESPP planners, with speedups ranging from sev-
eral factors to over one order of magnitude; (iii) for
anytime search, where feasible solutions are needed
fast, we report even better runtimes.

1 Introduction
We consider the Euclidean Shortest Path Problem (ESPP)
which asks us to find obstacle-avoiding paths between pairs
of points in the plane. This is a well known problem moti-
vated by a variety of real-world applications including com-
putational geometry, robotics and computer games. In each
of these settings, it is desirable to compute paths that are
as short as possible and as quickly as possible. Simul-
taneously achieving both of these properties is challeng-
ing and the problem has given rise to a variety of differ-
ent techniques. Among the most popular and effective are:
any-angle grid-based algorithms [Nash and Koenig, 2013;
Harabor et al., 2016], mesh-based path planners [Demyen
and Buro, 2006; Cui et al., 2017] and modern variations on
Visibility Graphs [Oh and Leong, 2017].

Leading works in this area all rely on state-space search to
find a solution and that search is often (though not always;
see [Demyen and Buro, 2006]) an all-or-nothing affair; i.e.
until a best solution is found, nothing is returned. This be-
haviour may be undesirable as it introduces the potential for
so-called first move lag, where a mobile agent must wait for
the search to finish completely before it can take even a first
step toward its target. In this work we propose new algorith-
mic techniques that can mitigate first move lag using anytime

behaviour [Hansen and Zhou, 2007]; i.e. we aim to compute
“good” solutions quickly and we guarantee to return optimal
solutions eventually, given sufficient time.

Our approach combines the strengths of two recent
pathfinding techniques: Polyanya [Cui et al., 2017], an
online mesh-based ESPP algorithm, and Compressed Path
Databases (CPDs) [Botea, 2011; Strasser et al., 2014], a fam-
ily of preprocessing-intensive speedup techniques developed
for grids and spatial networks. Like many ESPP algorithms,
ours is a two step approach involving offline preprocessing
followed by online search. In broad strokes:

• During the offline phase, we preprocess the input mesh
to extract a graph of co-visible points. We then prepro-
cess the graph to create a CPD: an auxiliary data struc-
ture that stores compressed all-pairs data and which can
be used to efficiently extract optimal paths between any
pair of graph vertices u and v.

• During the online phase, Polyanya connects the start and
target points to the co-visible graph. The CPD then pro-
ceeds to identify candidate paths: from each of the m
outgoing successors of the start point to each of the n
incoming successors of the target node.

Because each candidate path is a feasible solution, our ap-
proach can provide strong anytime performance and it guar-
antees to return the optimal path after considering at most
m× n possible paths.

We give a complete description of the new algorithm and
a number of additional enhancements that can speed up opti-
mal search. We then demonstrate effectiveness in a range of
experiments: on maps from real games and in comparison to
a range of leading ESPP techniques appearing in the recent
literature. For computing optimal paths, we show that the
new method can be substantially faster: from a few factors
to over one order of magnitude. For computing fast anytime
solutions, and for solutions with bounded suboptimal costs,
we show that the gains are larger still.

2 Preliminaries
In the Euclidean Shortest Path Problem (ESPP), we are asked
to find point-to-point paths in a continuous 2D workspace
which contains polygonal obstacles in fixed positions. Any
non-obstacle point from the workspace is a potential start or



target position and the objective is to find an obstacle avoid-
ing, distance minimum path, between pairs of points that are a
priori unknown. We next define some necessary terminology.

A polygon is a closed set of edges and a set of points each
called a vertex. Each edge is a contiguous interval between
two different vertices (i.e. e = [v1,v2]), where v1 and v2 are
the closed ends of e. Polygons can overlap but only if they
share a common edge or vertex.

Two points are visible if there exists a straight line between
this pair that does not intersect with any point from the inte-
rior of a polygon. We suppose that a mobile point-sized agent
can directly travel between any pair of co-visible points.

A path is a sequence of points P = 〈 p1,p2, · · · , pk 〉 such
that ∀ pi, pi+1 ∈ P , pi and pi+1 are co-visible. The cost
of a path P is the cumulative Euclidean distance between ev-
ery successive pair of points; i.e. cost(P) =

∑k−1
i=1 d(pi, pi+1)

where d(p, p′) is the Euclidean (straight line) distance be-
tween p and p′. A path is optimal if its cost is minimum
among all paths between its start and end points.

A vertex is called a convex vertex if it is located at the
convex corner of an obstacle. For a path P to be optimal, ∀
pi ∈ P except start and target, pi is a convex vertex. A vertex
is a dead-end vertex if it never occurs on an optimal path,
unless it is the start or end of the path.

2.1 Navigation Meshes
A navigation mesh divides the non-obstacle regions into a set
of convex polygons. In Fig. 1, black polygons are obstacles
whereas green/white polygons correspond to a navigation
mesh. Popular with game developers [Rabin, 2008], naviga-
tion meshes have several attractive properties: they are easy
to compute [Kallmann and Kapadia, 2014], are cheap to store
and update, and guarantee representational completeness (i.e.
every traversable point appears in the mesh). Navigation
meshes have been used for pathfinding in various settings:
optimal search [Cui et al., 2017], suboptimal search [Kall-
mann, 2005] and anytime search [Demyen and Buro, 2006].

2.2 Polyanya
We briefly review Polyanya [Cui et al., 2017], a state-of-the-
art optimal mesh-based planner which appears as an impor-
tant ingredient for the rest of the paper. Polyanya search in-
stantiates A* search [Hart et al., 1968] but on a navigation
mesh. The algorithm can therefore be described in the same
general way: there exist search nodes which generate suc-
cessors and these are expanded in best first order according
to some admissible heuristic function. Polyanya differs from
A* only in the domain-specific model used for each of these
components. We sketch the details below (see Fig. 1).

Search nodes: A search node is a tuple of the form (I, r)
where r is a distinguished vertex called the root and I is a
contiguous interval of points from an edge of the mesh with
every point i ∈ I being visible from r. The model can be un-
derstood as follows: the root r corresponds to the last turning
point on the path and I represents all the possible taut contin-
uations of the path, on the way to the target. The start point s
is a special case and defined as (I = [s], r = s).

Successors: The successors of node (I, r) are generated
by “pushing” the interval I away from r and across the face

NN

II

QQ K'K'

s

t

BB

OO

DD

CC

LL

KK
AA

EE FF

HH

JJ

MMPP

RR

GG

D'D'

Figure 1: Node expansion in Polyanya. When the current
node ([D,K],s) is expanded, it generates the observable successors
([D’,L],s), and ([L,K],s); and non-observable successors ([D’,O],D),
([O,A],D), ([A,B],D) , ([B,C],D), and ([C,D],D).

of an adjacent traversable polygon. There are two types of
successors: observable and non-observable. A successor
(I ′, r′ = r) is observable if each p′ ∈ I ′ is visible from r. By
contrast, a successor (I ′, r′ 6= r) is said to be non-observable
if each point p′ ∈ I ′ is not visible from r. Note that observ-
able successors share the same root as the parent. For non-
observable successors, the root r′ is one of the two endpoints
of the parent interval I . Fig. 1 shows the successors for node
([D,K], s). The target is a special case and can be generated as
soon as the search reaches its containing polygon.

Evaluation Function: To prioritise a node n = (I, r)
for expansion, Polyanya instantiates the f -value function:
f(n) = g(n)+h(n).Here g(n) is the cost of the optimal path
from the source node s to the root r. The function h is an ad-
missible lower-bound and indicates the cost from r, via some
point p ∈ I , to the target t. The estimate requires only sim-
ple geometry. Consider for example the node n = ([D, K], s)
from Fig. 1. The h-value is minimized by choosing the point
D; i.e. h = d(s, D)+d(t, D), where d is the Euclidean straight
line distance. See [Cui et al., 2017] for more details.

Polyanya terminates when the target is expanded or when
the open list becomes empty.

3 Offline Preprocessing
We now describe the auxiliary data structures required by our
new algorithm and the offline preprocessing step that con-
structs them. There are two main steps: constructing a graph
of co-visible convex vertices and building a corresponding
CPD. This phase takes as input a navigation mesh which can
be constructed as described in [Cui et al., 2017].

3.1 Identifying Co-Visible Vertices
A variety of methods exist for generating a graph of co-visible
vertices. All have worst-case upper-bounds of O(n2) where
n is the number of vertices in the planar environment. Faster
performance can be achieved in practice by only considering
and connecting convex vertices. Variations of this idea ap-
pear in the literature and under different names; e.g. Tangent
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Figure 2: Green area corresponds to the area visible from the source
node A. The first move on the optimal path from A to any node in the
purple (resp. red) area is D (resp. L).

Graphs [Liu and Arimoto, 1992], Silhouette Points [Young,
2001] and Sparse Visibility Graphs [Oh and Leong, 2017].

We now propose a new practical algorithm for comput-
ing such a Visibility Graph, in two dimensions, using the
Polyanya path planner. The vertex set V of the visibility
graph consists of all convex vertices of the obstacles. In
Fig. 2, {A, D, G, H, K, L, O} are convex vertices. Other obstacle
vertices (e.g., C) cannot appear on any optimal path, and are
dead-end vertices. Next, for each v ∈ V , we run a Polyanya-
like depth-first search where each expansion step only gener-
ates observable successors. If a successor’s interval contains
a convex vertex v′, we add an edge (v, v′) ∈ E, where ini-
tially E = ∅. The cost of this edge is d(v, v′). This algorithm
has quadratic worst-case but in practice runs much faster.

A similar idea appears in [Oh and Leong, 2017] but their
searches are conducted using Anya [Harabor et al., 2016]: an
optimal any-angle path planner where obstacles are rasterised
using a grid. In experiments, we compare against this method
and improve it using our more general mesh-based approach.

3.2 Building the CPD
Given the graph of co-visible nodes, we construct a corre-
sponding CPD [Botea, 2011]: an all-pairs data structure that
encodes the first move (equiv. first arc) on the optimal path
from each node s ∈ V to every other node t ∈ V . The proce-
dure is offline and requires one complete Dijkstra search for
each source node s ∈ V . The worst-case complexity is there-
foreO(|V ||E|+|V |2 log |V |). However, each Dijkstra search
can be executed in parallel with a potential speedup depend-
ing on the number of processors available on the machine.

First-Move Tables: Using a modified Dijkstra’s algo-
rithm, we compute for each source node s ∈ V , a first move
table where fm[s, t] returns a symbol that tells which of the
outgoing arcs of s appear on an optimal path, from s to any
t ∈ V . When s and t are co-visible, we also store an ad-
ditional redundant symbol E indicating that the two nodes
are directly reachable along a straight-line Euclidean-optimal
path. Table 1 shows all first moves for source vertices A, D
and G in Fig. 2. Another special symbol is “*” (wildcard)

Ordering A D G H K L O

A * {E ,D} D {E ,H} {E ,K} {E ,L} {E ,O}
D {E ,A} ∗ {E ,G} {E ,H} {E ,K} {E ,L} {E ,O}
G D {E ,D} * {E ,H} {E ,K} {E ,L} {E ,O}

Table 1: First moves for A, D and G for the example of Fig. 2.

which we add for table entries where s = t. We include the
redundant symbols and wildcards because these substantially
improve compression as shown in [Chiari et al., 2019].

Compression: We compress first-move tables using run-
length encoding (RLE) [Strasser et al., 2014]. RLE com-
presses a string of symbols into representative sub-strings,
called runs. Each run has two values: a start index and a
first-move symbol. For example, the string E ; E ; E ; E ; D; D,
can be compactly represented as two runs: 1E ; 5D.

To improve RLE compression we apply several known en-
hancements. First, we allow the wildcard symbol ”*” to be
compressed with any other preceding or subsequent symbol.
Secondly, for table entries with multiple symbols, we choose
the one that produces a longer run. For example, row A in
Table 1 can compress into just two runs: 1D; 4E (cf. 3 runs if
we choose E as the symbol for column D).

The effectiveness of RLE compression is dependent on the
way the candidate nodes are ordered. Following the sug-
gestion in [Strasser et al., 2015], we apply the Depth-First-
Search (DFS) Ordering. In Table 1, the order of the columns
is a DFS order of convex vertices in Fig. 2.

4 Online Search
CPDs can efficiently retrieve optimal paths when both source
s and target t are the vertices of the co-visible graph. We
use the function fm[s, t] which extracts from the database
a first-move symbol, from s to t. Each extraction opera-
tion requires a binary search through an RLE-encoded string
of symbols [Strasser et al., 2014]. Once a first-move is ex-
tracted, it can be executed (i.e. followed) to reach a new loca-
tion. The entire pathfinding process can thus be implemented
using simple recursion: we extract and follow optimal moves
until the target is reached.

One of the main challenges in ESPP is that s and t can be
arbitrary (i.e. a priori unknown) locations on the map. To
handle such cases we propose to first identify all graph ver-
tices visible from s, denoted Vs, and all graph vertices visible
from t, denoted Vt. We then extract a set of paths, from each
vs ∈ Vs to each vt ∈ Vt. Let cpd(vi, vj) denote the cost of
the optimal path between vi and vj . The minimal path (i.e.,
the one with shortest distance) sd from s to t is then

sd = min{d(s, vs)+cpd(vs, vt)+d(vt, t) | vs ∈ Vs, vt ∈ Vt}
In Fig. 2, Vs = {D, G, H, K, L} and Vt = {A, O} and the

optimal path from s to t can be obtained by computing the
pair-wise optimal paths for each vs ∈ Vs, vt ∈ Vt. This basic
algorithm extracts at most |Vs| × |Vt| candidate paths using
the CPD and guarantees to return an optimal solution.

4.1 Incremental Exploration
We now consider a more sophisticated algorithm, End Point
Search (EPS), that improves performance by reducing the



Algorithm 1: End Point Search (EPS)
Input: s:start, t:target, CPD: compressed-path-database
Output: an optimal path from s to t
Initialization: Vs = ∅, Vt = ∅, p = ∅, sd =∞

1 end = s; opp = t;
2 while searchs and searcht are not exhausted do
3 v = searchend←getNextVisibleVertex();
4 if v = s or v = t then
5 return 〈s, t〉 ;
6 if v 6= ⊥ then
7 for each v′ ∈ Vopp do
8 p, sd = CPD←getSmallerPath(v,v′);
9 searchs, searcht ←setSearchBound(sd);

10 Vend←append(v);
11 end, opp = opp, end;
12 return p;

number of pair-wise optimal paths that must be examined be-
fore guaranteeing optimality. The key idea of Algorithm 1 is
to incrementally explore the visible area from each of s and
t, discovering visible vertices for s and t one by one.

We propose to execute two best-first Polyanya searches,
denoted searchs and searcht, each of which is resumable
and each of which generates only observable successors at
every expansion step and returns visible vertices as they
are found. The algorithm iteratively expands nodes from
searchs and searcht in turn until both searches are ex-
hausted (line 2). The end and opp variables (line 1) define
from which end of the path we currently generate visible ver-
tices and which is the other/opposite end. During each iter-
ation, the algorithm progresses the relevant search by calling
getNextVisibleVertex (line 3). If the returned vertex is s or
t, the search terminates because s and t are visible from each
other and the optimal path is 〈s, t〉 (line 5). If the search is
not exhausted (i.e., it does not return ⊥), the algorithm up-
dates the shortest path p and the shortest distance sd by con-
sidering all paths from vertices at the opposite end Vopp to
this new vertex v. Specifically, for each v′ ∈ Vopp, the algo-
rithm calls getSmallerPath which uses the CPD to get the
optimal path from v′ to v and updates p and sd if needed
(lines 7 and 8). The search bound for both searches searchs
and searcht is updated to be the shortest distance sd found so
far (line 9). The new vertex v is added to the corresponding
visible set Vend. The two ends end and opp are then swapped
so that the search is alternated between searchs and searcht
(line 11). When the while loop concludes, the algorithm re-
turns the best found path. Note that EPS is a bi-directional
path extraction algorithm. Different from the bi-directional
search algorithms [Holte et al., 2016], the main challenge is
to avoid |Vs|×|Vt| total path extractions rather than balancing
the searching effort between the two sides.

4.2 Pruning Candidate Paths
The function getNextVisibleVertex returns a vertex v visi-
ble from its root r (one of s or t). We can immediately dis-
count dead-end vertices, and non-turn vertices v where the
angle from r to v does not allow turning around v (it in-
tersects a polygon obstacle). In Fig. 3, vertex G is visible
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Figure 3: An example of End Point Search. The red lines show
the optimal path. The area shown green or yellow corresponds to
the space visible from s and t. The green area shows the space
incrementally explored by Polyanya when searchs and searcht are
both exhausted.

from s but there is no turning point possible since the inci-
dent edge sG continues into the obstacle polygon. We can
also prune a vertex v which cannot lead to a shorter path
than the current bound, e.g. where d(s, v) + d(v, t) ≥ sd.
For example in Fig. 3, we can safely ignore the vertex K as
d(s, K) + d(K, t) > sd, where sd is the length of the optimal
path found so far (highlighted as red). Finally getNextVisi-
bleVertex can terminate when the top of the open list has an
f value greater than sd, since no path using this entry can be
shorter than sd.

We can avoid extracting paths for pairs (vs ∈ Vs,vt ∈ Vt) if
they cannot lead to a shorter path than the current bound, i.e.
d(s, vs) + d(vs, vt) + d(vt, t) > sd since d(vs, vt) is a lower
bound on the shortest path distance cpd(vs, vt). Similarly we
can prune vertex pairs (vs, vt) where the first move is not
taut, e.g. if w = fm[vs, vt] and 〈s, vs, w〉 is not taut then it
cannot be part of a shortest path. For example, the first move
fm[H, O] is O but 〈s, H, O〉 is non taut so we do not need to
consider the pair (H,O) further.

4.3 CPD Cost Caching
In each iteration of the while loop, the algorithm uses CPD to
extract the paths between a vertex v and every v′ ∈ Vopp. We
use the CPD to extract the optimal path from v′ to v and, for
each vertex vx on the extracted path, we cache spd(vx, v),
the shortest path distance from vx to v. For a subsequent
CPD path extraction, if the optimal path from v′′ to v reaches
the vertex vx for which spd(vx, v) is cached, we can use the
cached distance to get the path length from v′′ to v. This
simple caching strategy avoids unnecessarily using the CPD
to extract the path that is already cached. Although the al-
gorithm can cache spd(vx, v) for every v ∈ Vs ∪ Vt, in our
implementation, we only cache spd(vx, v) for the vertex v in
the current iteration of the while loop and reuse the space in
each iteration for the new v. This ensures that the caching
uses O(1) space for each vertex, i.e., the total space used by
the caching is O(|V |) where |V | is the number of nodes in
the co-visible graph.



4.4 Putting it All Together
End Point Search gives us an incremental exploration of the
pairs of endpoints on the CPD, which is reduced by pruning
and improved by caching CPD distances, eventually leading
to the optimal path. Overall the approach is correct.
Theorem 1. Algorithm 1 returns an optimal path from s to t

Proof. (Sketch) Clearly Algorithm 1 explores all paths exam-
ined by the equation defining sd at the beginning of Section 4
except those vertices that are non-turn or have f -values big-
ger than current distance sd (thus can never be part of the op-
timal path), and vertex pairs (vs, vt) where the shortest pos-
sible path is longer than the current distance sd. Hence the
returned path is optimal.

Example 1. Fig. 3 gives an example of the algorithm in ac-
tion. The search space of our End Point Search (EPS) reduces
the observable successors generated as the f -value of the rest
of the successors are greater than the sd (i.e. the path shown
as the red line). The non-turn vertices: {G} and {A}, and
dead-end vertices: {E,F}, and {P,Q,R} are filtered out at the
beginning, and the EPS only extracts one path (i.e the optimal
path highlighted as red) from CPD. The vertex K can be safely
ignored by our distance pruning approach introduced above.
Vertices L and H are never found because the searchs ex-
hausts before exploring them. Specifically, both search nodes
([K,L],s) and ([H,K],s) are not expanded by Polyanya as their
f -values are bigger than the search bound sd.

5 Experiments
We run experiments on a variety of grid map benchmarks
which are described in [Sturtevant, 2012], including 373
game maps from four sets of maps: DAO (156), DA (67), BG
(75), SC (75). All benchmarks are available from the HOG2
online repository.1 We compare our algorithm with a range
of competitors detailed below:
Polyanya [Cui et al., 2017] is a fast, optimal, online pathfind-
ing algorithm on navigation mesh. The source code of
Polyanya and input navigation mesh are from the publicly
available repository.2
ENLSVG (Edge-N-Level Spare Visibility Graph) [Oh and
Leong, 2017] is an optimal, off-line pathfinding algorithm.
The implementation is taken from an online repository.3
Poly-ENLSVG is an improvement of the original ENLSVG
algorithm which we improve by applying our Polyanya-based
visible vertex retrieval approach (see Section 3.1) for the in-
sertion phase of ENLSVG. Here, we prune the dead-end and
non-turn vertices to further improve the performance.
SUB-NL (N-level Subgoal graph) [Uras and Koenig, 2015] is
a suboptimal, off-line pathfinding algorithm. We run Theta-
A* [Nash et al., 2007] on top of N-level subgoal graph, using
the publicly available implementation.4

We implemented our algorithm in C++. All the experi-
ments are performed on a 2.6 GHz Intel Core i7 machine

1https://github.com/nathansttt/hog2
2https://bitbucket.org/mlcui1
3https://github.com/Ohohcakester
4http://idm-lab.org

#M #Q #V #CV Build Time Raw Memory CPD Memory
Avg Max Avg Max Avg Max

DAO 156 159k 1727.6 926.5 0.033 0.831 8.012 134.977 0.207 3.640
DA 67 68k 1182.9 610.8 0.006 0.048 2.244 20.611 0.063 0.254
BG 75 93k 1294.4 667.7 0.011 0.233 3.887 66.064 0.119 1.366
SC 75 198k 11487.5 5792.7 0.711 8.463 190.38 2202.23 2.325 14.075

Table 2: Total number of Maps (#M) and Queries (#Q), average
number of vertices (#V) and convex vertices (#CV) in the maps, av-
erage and maximum building time in minutes, and average and max-
imum memory before compression (Raw memory) and after com-
pression (CPD memory) in MB for the four benchmark suites.

Total Poly-ENLSVG EPS
|Vs| |Vt| |Vs| |Vt| |Vs| |Vt| #Paths #FirstMoves

DAO 69.324 71.495 19.778 19.987 15.093 14.923 54.182 773.041
DA 46.171 45.707 13.202 12.922 10.656 10.650 25.114 324.294
BG 51.926 49.175 15.629 14.335 9.185 9.015 15.264 140.324
SC 180.013 178.874 45.889 45.356 29.517 29.449 110.214 1767.046

Table 3: |Vs| (resp. |Vt|) denotes the average number of vertices vis-
ible from s (resp. t) considered by an algorithm to obtain the results.
Total includes all visible vertices for s or t without any pruning. For
EPS, we also show the average number of path extractions and first
move extractions from the CPD.

with 16GB of RAM and running OSX 10.14.6.

Experiment 1: CPD Statistics Table 2 shows the aver-
age and maximal size of CPD, and building time for the four
benchmarks suites. Clearly, our CPDs are memory efficient
and the compression reduces the size of first-move tables by
up to two orders of magnitude. The tables have very small
numbers of runs per entry and hence very fast lookup times.
Our CPDs are cheap to build, and for most of the maps can
be computed within a few minutes. Note that the CPDs are
built on a 12 core Macbook Pro laptop and the performance
would be better/worse if more/less processors are available.

Experiment 2: Query Processing Time In Fig. 4 , we
compare the query processing time for our approach against
the competitors. We sort the queries by the number of node
expansions required by the standard A* search to solve them
(which is a proxy for how challenging a query is) and the x-
axis corresponds to the percentile ranks of queries in this or-
der. Fig. 4 shows that EPS significantly outperforms the com-
petitors on all four benchmarks especially when the queries
are more challenging. Note that the y-axis is shown logarith-
mic. EPS is around 2-3 times faster than SUB-NL (which
does not guarantee optimal solutions) and 2-4 times faster
than Poly-ENSLVG. Polyanya is faster than EPS for the less
challenging queries because, for such queries, s and t are
close (and often visible from each other) and the dominant
cost for EPS is the two incremental Polyanya searches from
s and t. For more challenging queries, EPS is more than an
order of magnitude faster than Polyanya.

Table 3 reports the average number of the vertices visi-
ble from s and t expanded by Poly-ENLSVG and EPS af-
ter pruning non-turn and dead-end vertices. Both algorithms
significantly reduce the number of visible vertices expanded.
Since EPS makes use of the search bound sd to restrict the
Polyanya search, it expands a smaller number of visible ver-

https://github.com/nathansttt/hog2
https://bitbucket.org/mlcui1
https://github.com/Ohohcakester
http://idm-lab.org
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Figure 4: Runtime comparison on the four benchmarks (lower the better). The x-axis shows the percentile ranks of queries in number of node
expansions needed by A* search to solve them.
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Figure 5: EPS anytime behaviour. The x-axis is the same as in Fig. 4. The y-axis shows the average runtime when EPS finds the first path with
length within a certain factor Q of optimal path length (i.e., 1.00, 1.01, 1.05 and 1.10). Q = 1.0 is the time when EPS happens to discover
the optimal path but cannot guarantee its optimality. The provably optimal path is the guaranteed optimal path at termination.
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Figure 6: (left) Speedup of EPS (over A* search) for finding so-
lutions of different quality on benchmark suite BG, and (right) a
reproduced graph for the same experiment for TRA*.

tices than Poly-ENLSVG especially for BG and SC bench-
marks. Also, note that the number of path extractions by EPS
is much smaller than |Vs| × |Vt| since path pruning can avoid
considering many of them.

Experiment 3: Anytime Search In time-constrained ap-
plications (e.g., computer games), anytime pathfinding is of-
ten desirable which returns a valid but potentially suboptimal
path as soon as possible before progressively optimizing it un-
til an optimal path is found. This motivates us to consider EPS
as an anytime search algorithm. Fig. 5 shows the runtimes of
EPS to find the first valid path, a path with length within a

certain factor of the optimal path length, or the guaranteed
optimal path (i.e., when EPS terminates). EPS demonstrates
excellent anytime behaviors, e.g., it finds the first valid path
within 10µs and paths within 10% of optimal within 15µs.

In Fig. 6 (left) we show the speedup of EPS anytime search
compared to A* search. Fig. 6 (right) shows a graph re-
produced from [Demyen and Buro, 2006] showing similar
comparison for TRA* anytime search, a popular mesh-based
planner, which aims at finding the first solutions fast. EPS
finds first solutions 3 times faster and finds the optimal solu-
tion (i.e., Q = 1.00) in similar time that TRA* requires to
find the first solution.

6 Conclusion
We introduce a new approach to Euclidean path finding which
substantially improves the state of the art for optimal ESPP
and has equally impressive anytime behaviour. It makes use
of powerful CPD approaches to handle path finding on the
visibility graph, and an efficient incremental attachment of
the end points to this graph, to quickly find high quality solu-
tions, and prove optimality fast.
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