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Abstract

Voxel grids are an increasingly common enabler for pathfind-
ing in 3D spaces. Currently in this area there exists only a lim-
ited number of publicly available benchmarks. This makes it
difficult to establish state-of-the-art performance and to com-
pare the strengths and weaknesses of competing search tech-
niques. In this work, we introduce three new and diverse sets
of voxel benchmarks intended to help fill this gap. We further
describe our methodology for generating and selecting a rep-
resentative set of pathfinding queries. Our dataset comprises
46 distinct voxel maps and 92,000 problem instances. The
data is drawn from distinct application domains: computer
video games, industrial plant layouts and sandstone porosity
scans. Featuring distinctive geometric properties and a variety
of challenging query types, these new datasets allow practi-
tioners to evaluate algorithmic performance across a variety
of settings encountered when pathfinding in practice.

Introduction
Computing a shortest path from A to B is a common prob-
lem in many practical contexts, such as robotics, pipe rout-
ing, and computer video games. While pathfinding sys-
tems in two dimensions (2D) have been studied extensively,
pathfinding in three dimensions (3D) remains relatively un-
explored. As computing optimal paths in true-3D has been
shown to be NP-hard (Canny and Reif 1987), the typical
strategy is to approximate the 3D space by constructing a
graph and then applying a conventional search algorithm,
such as A*.

Voxel grid maps are a simple approximation technique
where 3D space is partitioned into unit-sized cubes. Each
voxel has up to 26 neighbours, and the total number of vox-
els is the width × height × depth of the map. Among the ad-
vantages of voxel grids is that they enable high-quality solu-
tions and allow direct reasoning about the height and vertical
positions of 3D agents. This means voxel-based planners can
solve a broader range of 3D pathfinding queries than some
competing techniques; e.g., pseudo-3D methods where 3D
agents plan on a 2D navigation mesh (Noonchester 2019).
Another competing approach, Sparse Voxel Octrees (SVO),
recursively partition 3D space into octants of increasingly
smaller size (Schwarz and Seidel 2010). Paths in the SVO

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

structure are defined in terms of octant centres, which means
they may introduce long detours and have higher cost than
equivalent solutions computed with voxel grids. Such con-
siderations are important for a variety of 3D applications,
such as computer video games where agents need to appear
intelligent (Beig et al. 2019).

Recent works which have had success searching on voxel
grids include studies in aerial drone navigation (Liu et al.
2017; Zhang 2021; Zhang, Zhang, and Low 2021), pipe rout-
ing (Min, Ruy, and Park 2020) and pathfinding for 3D com-
puter video games (Brewer and Sturtevant 2018; Min 2019;
Nobes et al. 2022). Yet despite a variety of ideas and per-
spectives, the state-of-the-art in this area is unclear. The only
publicly available voxel dataset that we are aware of is the
Warframe benchmark (Brewer and Sturtevant 2018), a col-
lection of 44 maps drawn from the epoynmous space combat
game by developer Digital Extremes. This benchmark fea-
tures large voxel worlds with complex geometry. However,
the game setting and generated problem sets reflect only a
narrow range of practical interests.

For a contrast consider the related area of 2D pathfinding,
where a variety of publicly available benchmarks have been
proposed (Demetrescu, Goldberg, and Johnson 2009; Sturte-
vant 2012; Sturtevant et al. 2019; Harabor, Hechenberger,
and Jahn 2022). Some 2D domains are drawn from real ap-
plications (several types of game worlds, rasterised maps of
city streets and real-world road networks) and these are de-
signed to test practical performance. Other 2D domains are
synthetically generated testbeds (maze, room, random), and
these are designed to understand pathological behaviour of
search algorithms. These benchmarks help to establish clear
performance indicators and they serve to highlight the dif-
ferent strengths and weaknesses of competing algorithms.

To fill the gap between 2D and 3D pathfinding, we pro-
pose three new voxel benchmarks. Featuring a wide a variety
of geometrical characteristics, our maps are drawn from di-
verse applications: (i) geological rock samples (Sandstone);
(ii) industrial plant layouts (Plants); (iii) 3D games with in-
door navigation (Descent). There are a total of 46 maps and
92,000 problem instances, with map sizes ranging from sev-
eral million voxels to over one billion. The voxel maps and
sets of problem instances are available for download1. We

1https://bitbucket.org/shortestpathlab/benchmarks/
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(a) Warframe: FA2
826× 493× 574

(b) Warframe: C2
1093× 647× 725

Figure 1: Voxel maps from the Warframe dataset (Brewer
and Sturtevant 2018): (a) FA2; and (b) C2, a C-map variant.

describe the origins of each data set and present a novel
methodological approach for generating a representative and
unbiased set of pathfinding queries. We then compare the
performance of two voxel-based search algorithms to high-
light differences across the three domains.

Existing Benchmarks
In this section, we summarise the position of existing voxel
benchmarks in the literature, and draw attention to key char-
acteristics that we identify are missing from current testing
suites available to the search community.

Warframe (Brewer and Sturtevant 2018) is a set of 44 pub-
licly available voxel grid maps, taken from the eponymous
online space combat game. Maps range in size from sev-
eral million voxels to hundreds of millions of voxels. Each
map typically features asteroids of different sizes floating
in space. A small number of maps also have spaceships,
which have internal structure that can be navigated. Fig-
ure 1a and Figure 1b show examples of each type. For per-
formance evaluation, each map comes with a set of 10,000
pre-generated problem instances (referred to equivalently as
queries or start-target pairs).

The Warframe benchmark has appeared in a variety of pa-
pers. Some authors evaluate only a single map named “Com-
plex” (Muratov and Zagarskikh 2019; Saha et al. 2022;
Tabacaru, Atzmon, and Felner 2022) , a small test case of
around 8 million voxels, while others (Nobes et al. 2022)
report results for a large majority (40) of maps. In each
case Warframe provides a valuable reference point for test-
ing and comparing 3D search algorithms. The benchmark is
also valuable for the community as it documents the main
challenges that arise in a specific application setting. Yet in
the broader context of 3D pathfinding, the Warframe prob-
lems are narrowly focused. In particular, there is a need for a
greater variety of maps, so that benchmark data more closely
reflects the diverse range of real-world problems that moti-
vate works in this area. There is also a need for more diverse
problem instances, so that researchers can explore and eval-
uate the full range of planner performance in each type of
application. We now explore these issues in turn.

(1) Problem Variety: Each map in the Warframe bench-
mark is composed of sparsely scattered asteroids, debris and
sometimes spaceships, floating in open space. Each prob-
lem instance is is a start-target pair of voxels, both within 5

Warframe C-maps Sandstone Descent Plants
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Figure 2: Heuristic error across each benchmark data set.

voxels of an obstacle. Being set in space, there usually exist
many valid approaches to solving each problem (e.g., over,
under or around obstacles). These attributes provide an in-
teresting dataset for researchers and practitioners interested
in open-world 3D computer game traversal.

Yet works on 3D pathfinding are motivated by a variety
of diverse applications which often do not share strong sim-
ilarities to open video-game traversal. Practitioners work-
ing on e.g., indoor (Li et al. 2018) and outdoor (Zhang,
Zhang, and Low 2021) drone navigation or the design of
chemical processing plants (Belov et al. 2020) often con-
sider more “grounded” queries (from building-to-building
or module-to-module) where paths cannot go underneath
obstacles and cannot always bend easily around. Even for
computer games, developers typically distinguish between
the types of queries presented by “outdoor“ 3D navigation
(which Warframe closely resembles) and “indoor” 3D navi-
gation (which Warframe does not).

In other words, effective performance on Warframe is not
necessarily indicative of effective performance elsewhere.
Having a diverse set of benchmarks, including ones drawn
from real applications, helps the community to more clearly
identify the strengths and weaknesses of competing plan-
ners. For example, there are several initiatives in the AI com-
munity that track progress on a variety of problems and ap-
plication domains (Long and Fox 2006; Stuckey et al. 2014;
Sturtevant et al. 2014; Shen et al. 2023). These works help
to establish the state-of-the-art, they indicate where the re-
maining challenges are, and they stimulate further research.

(2) Problem Difficulty: When evaluating and compar-
ing pathfinding algorithms, it is important to understand
performance across the full range of query-availability in-
side a problem setting; i.e., not only on average but also
in the worst case. This is because practical applicability is
often dependent on the worst case. In the context of video
games for example, developers create customised bench-
marks that automatically generate and test up to millions
of problems instances (Gillberg 2019). Analysing worst-
case results from such experiments helps developers iden-
tify problems in map or game-play design, and can lead to
changes in the pathfinding system itself in order to guar-
antee a “quality of service” for players. However, contin-
uously generating and solving millions of test problems is
prohibitive. For this reason, publicly available benchmarks
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Maps # Instances A* JPS-3D
Warframe

Test 2 20,000 0.01 0.01
C-maps 4 40,000 640.95 296.91
Standard 38 380,000 15.53 10.64

New
Sandstone 11 22,000 8.44 6.06
Descent 30 60,000 48.17 11.90
Plants 5 10,000 4.65 1.78
Totals 46 92,000 61.26 19.83

Table 1: Cumulative runtime (hours) for A* and JPS-3D
across each benchmark. Totals exclude Warframe.

such as Warframe are highly valuable: they provide a smaller
but still representative test set that highlights the main chal-
lenges in a specific domain (i.e., the problems range in diffi-
culty from very easy to very hard).

When discussing the difficulty of solving a given
pathfinding problem it is common to refer to heuristic error
and baseline expansion cost. Heuristic error is calculated as
the ratio between the true cost of the optimal path, from start
to target, and the estimated heuristic cost at the start node.
We use the voxel heuristic estimator, which returns the min-
imum (26-connected) distance between two voxels while ig-
noring all obstacles. Baseline expansion cost meanwhile is
the number of node expansions required by a comparison
algorithm to solve a given problem. Here we use A* search.

In Figure 2 we measure the heuristic error for all problem
instances on 38 of the 44 maps Warframe maps (excluded
maps are discussed next). We observe that the median er-
ror is 1.007 on these 38 maps; i.e., the cost increase, from
start node estimate to true optimal, is only 0.7%. In gen-
eral, smaller heuristic error indicates problems are easier to
solve. Table 2 confirms this—we see that the median run-
time for our baseline A* solver is just 2.58ms. We observe
similar trends with low A* node expansion cost in Figure
8. Despite Warframe maps having hundreds of millions of
traversable voxels (see Figure 4), A* must expand a median
of only thousands of nodes during search. In other words,
when comparing across Warframe data, there are limited op-
portunities for new and emerging pathfinding algorithms to
demonstrate substantial improvements. This is because the
baseline A* algorithm is already competitive in most cases.

A significant exception to these observations is a set of 4
maps from Warframe which we refer to as the C-map vari-
ants. These maps feature a massive Fomorian capital ship,
which has a complex interior that players are required to
fly inside (Figure 1b). This provides distinctive interior-to-
exterior (and vice versa) queries. Due to the size of the cap-
ital ship, these maps are several factors larger than the rest.
The median heuristic error for these maps is 1.5; which in-
dicates that these problems are substantially harder to solve.
The two remaining maps (“Simple” and “Complex”) are an
order of magnitude smaller than the next largest map. We
refer to these maps as Test variants, as they feature only a
single floating object. Queries on these maps are very sim-
ple and much easier to solve than other problems in the War-

frame set. In Table 1 we report cumulative runtimes for A*
search when solving each of these 3 distinct subsets. We
see that solving C-maps instances take orders of magnitude
longer than for the 38-map majority set (up to hundreds of
seconds for the very hardest instances), while the test in-
stances are orders of magnitude faster than the 38-majority
set. In other words, aggregating across all of Warframe, or
only testing only specific subsets, may produce misleading
performance indicators. We suggest that performance mea-
sures should be reported separately on the 38-map majority,
the 4 C-maps, and the 2 Test maps in the Warframe bench-
mark, due to their distinctive characteristics.

Another way to assess the difficulty of a given problem is
to measure the amount of directional bias. This occurs when
a “hard” start-to-target instance becomes an “easy” target-
to-start problem. Problem instances which suffer from di-
rectional bias may be challenging but in uninteresting ways.
Figure 5 measures the ratio of forward expansions to back-
ward expansions across the 42 considered Warframe maps.
We see that directional bias is prevalent. In other words,
drawing comparisons between algorithms that solve these
instances may lead to incorrect conclusions about strengths
and weaknesses of competing techniques.

New Diverse Voxel Benchmarks
In the following sections, we outline three new bench-
marks for evaluating three-dimensional pathfinding algo-
rithms. Each benchmark involves separate geometric char-
acteristics that test distinct aspects of the three-dimensional
pathfinding problem.
1. The first set of benchmarks are derived from tomographic

scans of natural sandstone samples. These maps consist
of densely packed multiply-connected percolating path-
ways through the rock samples.

2. The second set of benchmarks are obtained from the De-
scent video game. These examples consider long three-
dimensional corridors and tunnels representative of inte-
rior spaces and mine-shafts.

3. The final set contains industrial plant layout bench-
marks based on real pipe routing problems. These prob-
lems involve pathfinding through combinations of large
and narrow voids around regular geometric obstacles—
representative of factory layouts or cityscape structures.

The following sections provide more information on each
of these benchmark geometries. Later, we describe how in-
stances of pathfinding problems with a representative range
of difficulties are obtained from these maps.

Sandstone Porosity Scans
The first set of pathfinding maps is derived from X-ray tomo-
graphic computed images (XRCT) of natural sandstone sam-
ples. The scenarios are based on scans of 11 sandstone plugs
originally provided by Kocurek Industries (Kocurek Indus-
tries Inc. 2021), which were imaged and processed by Neu-
mann et al. (2021). The samples include Bandera Gray,
Parker, Kirby, Bandera Brown, Berea Sister Gray, Berea Up-
per Gray, Berea, Castlegate, Buff Berea, Leopard and Ben-
theimer sandstones.
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(a) Sandstone: Berea
400× 400× 400

(b) Descent: Level03
1042× 854× 637

(c) Industrial Plants: Plant03
731× 445× 477

Figure 3: Examples of voxel maps from each of the new benchmark data sets: (a) sandstone, (b) Descent, and (c) industrial
plants. For visual clarity, we draw free voxels rather than obstacles for sandstone maps (∼80% of the domains are filled-in).

Neumann et al. (2021) produced publicly-available binary
images of the connected pore space within each sample for
the purpose of numerical flow simulations and permeabil-
ity predictions. Each of the raw binary images has voxel
dimensions of 1000 × 1000 × 1000. To keep the size and
the computational cost of these maps comparable to existing
benchmarks, we take a 400× 400× 400 subset of the origi-
nal image, resulting in maps with 64 million voxels each. We
construct the voxel maps directly from the binary data, treat-
ing the sandstone itself as an obstacle, and the pore space
as traversable terrain. Traversable voxels compose a single
connected region, assuming a 6-connected neighbourhood.
We define 11 maps with 2,000 pathfinding instances each,
for a total of 22,000 problems. The pore-space geometry is
characterised by winding narrow corridors and natural non-
symmetric shapes resulting in an environment reminiscent
of random grid maps.

Descent
The second set of scenarios is derived from in-game levels
from Descent, a video game developed by Parallax Software
and released by Interplay Productions in 1995. It is recog-
nised as the earliest FPS to feature entirely true-3D graph-
ics, and is now open source (Guinness World Records 1995).
Descent is well-suited for search as each level has been
designed specifically for 3D maneuverability and traversal;
featuring rooms and branching corridors. We adapt the 27
in-game levels and 3 secret levels into voxel-world maps.
The benchmark consists of 30 maps (one for each level) with
2,000 instances each, for a total of 60,000 problem instances.

Level descriptions are read from in-game files. Positional
data from the game is continuous, and thus we convert each
map into a discrete voxel-world equivalent. We use an on-
line voxeliser (Westerdiep 2022) with 0 shell thickness and
match the output voxel dimensions to the in-game units
(as an integer). This conversion ensures that the interior
traversable region of the original level remains one contigu-
ous, enclosed region. The interior of the level only accounts
for a small proportion of the total size of the map, where
there is a significant exterior region of open space. A one-
voxel border is added around all edges of the map so that
the exterior is also one contiguous region (to enable exterior
queries). We, however, generate instances solely from the in-

ternal traversable region which corresponds to the in-game
playable area.

Industrial Plant Layouts
The final set of benchmarks is designed to mimic indus-
trial plant design and pipe routing problems. Using real data
from chemical processing plants, we construct voxel maps
that feature layouts composed of many types and scales of
equipment modules, safety and engineering zones, support
units, and more. Some of these layouts have appeared pre-
viously in the literature (Belov et al. 2020), while others
are entirely new. The benchmark data has been anonymised;
it uses bounding boxes instead of original component ge-
ometry and it features layouts designed for a mix of both
demonstration and practical purposes. The original geome-
try of each plant layout is described at millimetre precision.
The corresponding size of the voxel grid maps at this reso-
lution is prohibitive; up to 924 trillion voxels are required to
encode the largest map, taking terabytes of space if stored
explicitly. Instead, we construct geometry at 10cm resolu-
tion which produces map sizes in the hundreds of millions
of voxels.

The benchmark consists of five unique plant layouts with
2,000 routing problems each for a total of 10,000 prob-
lem instances. Instances are generated by choosing at ran-
dom start and target locations from among those voxels im-
mediately adjacent to the surfaces of equipment modules.
This simulates routing pipes between two fixed attachment
points on corresponding modules. We exclude several ar-
eas such as safety or truck access zones, interiors of racks,
and many miscellaneous equipment parts such as equipment
skirts (lower supports for large vessels) from potential start/-
target points. This decision better ties the resulting prob-
lem instances to valid pipe-routing scenarios. In addition,
pathfinding between the often ground-attached cuboid ob-
stacles is a close analogue to the problem of navigating aerial
drones through cityscapes.

Size and Traversability
Figure 4 shows the distribution of voxel sizes of the
maps and their traversable regions across each bench-
mark. Traversable regions are computed by performing a
6-connected (i.e., North/South, East/West, Up/Down) flood
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Figure 4: Size of maps and traversable regions across each
benchmark. All Sandstone maps are 64M voxels. Warframe
and C-maps are included for comparison, but are prior work.

filling procedure. Each voxel in the traversable region is
reachable from any other voxel in the traversable region
using either 6-connected or 26-connected movement. We
assume optimal paths do not involve any diagonal moves
through the corners or edges of a filled voxel (this is analo-
gous to the “no-corner-cutting” rule in 2D grids). Note that
by traversable space, we do not refer explicitly to the num-
ber of empty voxels. This is misleading as certain regions of
free space are not reachable via search (i.e., are disconnected
exterior, inside hollow obstacles, etc.).

By design, the sandstone maps have a uniform 64 mil-
lion voxels. Obstacles make up between 73% and 86% of
the maps. The remaining pore space is traversable, ranging
from 9 to 17 million voxels. The Descent levels vary sig-
nificantly in size, with the majority having hundreds of mil-
lions of voxels; the largest reaching 1.3 billion voxels. This
size pertains to the required boundaries around the level’s in-
game geometry. Note that a small proportion of this space
(only up to 17 million voxels) is part of the traversable
interior. The industrial plant benchmarks also vary signifi-
cantly in size, with the smallest having only 3 million vox-
els and the largest having 924 million. Notably, these maps
have the greatest proportion of traversable space of the three
benchmarks. This aligns with the geometric characteristics
of sparse module-to-module routing across grounded verti-
cal towers.

Generating Problems
We construct each map file in a unified format, consistent
with existing 3D benchmarks (Brewer and Sturtevant 2018).
To ensure the files are easy to read and parse by any lan-
guage or application, each map file simply contains the type
and dimensions of the map in plain text, followed by a list of
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Figure 5: Directional-bias of problem selection in each data
set. Cost refers to A* node expansions. Forward and back-
ward refers to searching from start-to-target or vice versa,
respectively. Ratios of directional-costs represent how many
times harder (positive) or easier (negative) it is to solve the
backward, target-to-start query. Note that the Sandstone, De-
scent and Plants benchmarks have been designed to control
for the direction of bias.

voxels that are filled. Prior work uses only the type ‘voxel’
to describe the map. For convenience, we introduce the type
‘rev voxel’, which signifies that the voxels listed are instead
empty rather than filled. This is relevant for dense bench-
marks, such as the sandstone maps, where the majority of
the domain is filled-in.

Our next goal is to generate a suite of pathfinding prob-
lem instances. Here, we hope to obtain a representative
dataset: the problems are distributed evenly across potential
problem difficulties introduced by unique voxel geometry.
However, merely generating random start and target pairs
from the voxel maps is known to yield biased samples that
over-represent easy pathfinding problems (Harabor, Hechen-
berger, and Jahn 2022). A further challenge in 3D voxel grid
maps is that it can be very expensive to generate and solve
large numbers of random problems, due to the large domain
sizes. It is therefore important to select a good subset of test
problems: small enough so that evaluation is not prohibitive,
but diverse enough to contain a large range of challenges
from each map.

Our approach largely follows the scenario generation
procedure presented by Harabor, Hechenberger, and Jahn
(2022). This method combines large random sampling with
k-means clustering to select a much smaller, but more rep-
resentative test set. The same procedure is used to generate
instances across all benchmarks. In this work, we randomly
generate 100,000 unique problem instances, such that the
standard error estimate of the mean is within ±1% of the
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sample mean, given a 99% confidence interval. Each prob-
lem instance is generated only from domain-dependent re-
gions of voxels to support interesting types of queries. This
region consists of all free space for the sandstone bench-
marks, the playable interior of for each Descent level, and
reachable voxels immediately adjacent to equipment mod-
ules within the industrial plants.

Next, we aim to select a representative sub-sample by
ranking instances. In this work, we use the number of nodes
expanded by A* as a measure of problem difficulty. This has
been shown to better align with problems that other algo-
rithms also find challenging than previous measures such as
path length (Harabor, Hechenberger, and Jahn 2022). Each
problem is solved with A* both forwards (start-to-target)
and backwards (target-to-start). By solving each query in
both directions, we can reduce misleading bias in problem
difficulty (it is easier to search in one direction relative to
the other) by taking the minimum cost as the ranking metric.
This guarantees that the selected problems will be at least as
hard as their stated difficulty. We then output each instance
using the start-target ordering that corresponds to the min-
imum cost. We explore this issue further in the following
section.

Returning to the problem of selecting a representative
subset, once all sampled instances are ranked, we then group
them into buckets. We perform k-means clustering on the
buckets, taking the maximum cost bucket in each cluster and
selecting instances with the highest expansion cost; all oth-
ers are discarded. We use a bucket size of 200 and select the
ten highest-cost instances, which yields a subset of 2,000
final instances. For more information, see Harabor, Hechen-
berger, and Jahn (2022).

We can see that the final set of problems has an even dis-
tribution of difficulty on a per map basis by comparing the
bucket clustering approach to uniform grouping and selec-
tion (i.e., dividing the problems into 200 groups of roughly
even size, and taking the 10 highest-ranked instances). Fig-
ure 7 shows the uniform strategy selects a majority of easy
instances (low-difficulty), whereas k-means sampling re-
turns a more even distribution across all levels of problem
difficulty.

Directional Bias
Due to geometrical asymmetry, pathfinding queries can have
significantly disproportionate difficulty depending on the di-
rection of the search (see Figure 5); we call this property di-
rectional bias. Problems with large directional bias present
a hollow challenge, whereby simply reversing the order of
search can make the problem easy. In Harabor, Hechen-
berger, and Jahn (2022) problems are ranked according to
the minimum cost of forward or backward search. This ap-
proach avoids classification errors for directionally-biased
instances, in that it guarantees problems are at least as diffi-
cult as the minimum expansion cost. However, queries that
have been ranked as easy may still be presented in a direction
that is substantially harder, requiring many more expansions
to solve (if the minimum cost was achieved by swapping the
identity of the start and target). We demonstrate this problem
in the following experiment.
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Figure 6: Artificial search time speedups of A* over itself,
when informed vs. uninformed about directional bias (i.e.,
knows whether search is easier from start-to-target or vice
versa). Results are reported on the Warframe benchmark.
We plot the average speedup, bucketed by each percentile
of node expansions by the baseline, uninformed A*. Error
bars indicate standard deviation; for clarity, we show only
every third.

Experiment 1 (Figure 6): Typically, we report runtime
performance in terms of a given algorithm compared to a
standard baseline. Here, we construct artificial comparisons
where both the given and baseline algorithm is 3D A*. Both
algorithms will solve the same problem instances, but we
toy with the direction (start-to-target or target-to-start) that
each algorithm searches. This emulates the advantages that
can be gained from being informed about directional bias
ahead of time. We report performance in terms of search
time speedup: a speedup of 101 indicates that an algorithm
is ten times faster than baseline A*; less than 100 indicates
worse performance. We test three scenarios: (i) we strictly
reverse (target-to-start) the search direction of all queries,
irrespective of directional bias; (ii) we search in reverse
only on advantageous instances based on prior knowledge
of directional bias; (iii) we construct an artificial comparison
where the given algorithm searches all queries in the easier
direction, whereas the baseline instead searches in the hard
direction (note: this is a different baseline to (i) and (ii)).
Figure 6 shows that we are able to report significantly differ-
ent speedups on the same problems while running the same
algorithm, simply by playing with the direction of search.

We note that it is not our suggestion to eliminate
directionally-biased instances, for they are indeed important
to evaluate for two reasons; (i) in practice, we do not know
ahead of time which direction is easier or harder, and; (ii)
practical performance can be significantly impacted by these
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types of queries. Instead, we identify that existing works
do not consider this issue, and thus enable misleading con-
clusions by abusing information about directional bias. We
hope to improve existing methodology by controlling for di-
rectional bias when generating benchmark instances.

Here, we deviate from prior work and contribute a novel
method of problem generation: we provide problems that are
explicitly biased in the forward direction of search (i.e., they
are guaranteed to be at least as easy in the direction provided
by the benchmark). The benefit of this method of problem
selection lies in the nature of being informed a priori of in-
herent directional bias. This allows researchers to isolate this
bias from aggregate performance evaluation, while retaining
the ability to draw conclusions about practical performance
on biased problems by simply running problems in reverse.

Evaluation
We test each new benchmark with pathfinding algorithms
from the literature. For comparison, we also report re-
sults across the existing Warframe benchmark (Brewer and
Sturtevant 2018). These experiments aim to provide a gen-
eral indication of performance and examine trade-offs. We
conduct experiments using the following algorithms:
• JPS-3D (Nobes et al. 2022). The leading planner for on-

line grid search in 3D. We use a C++ implementation
from the WARTHOG pathfinding library (Harabor 2015),

• Grid A* (3D). The standard baseline algorithm. Our C++
implementation shares a common base with JPS-3D.

Both algorithms use the voxel heuristic, which returns
the minimum (26-connected) distance between two voxels
while ignoring all obstacles (this is analogous to the well
known octile distance heuristic from 2D grids). All experi-
ments were performed on an Intel Core i7-8559U CPU with
32GB of RAM running Ubuntu 18.04.3 LTS.

Cumulative search time results are reported in Table 1.
We further outline the distribution search time performance
averaged across instances in Table 2. These provide an
overview of the general performance across the benchmarks.
We further observe that JPS-3D consistently outperforms A*
across the problem sets. The cumulative search time across
the four C-maps dwarfs the runtime of all other data sets. A
similar observation, but in the other direction (smaller run-
times) is true for the set of Test maps. Noting substantial
distinctions, we exclude the Test maps from further analy-
sis, and report performance measures separately for the 4
C-map variants and 38 standard Warframe maps.

Figure 8 shows the nodes expanded by A* across the
benchmark data sets. Here, we observe the greatest differ-
entiation between the Descent and C-map problems: the up-
per 50% of the instances across the C-map variants expand
significantly more nodes. Yet the traversable voxels in the
Descent maps are an order of magnitude smaller than that of
the C-maps. We observe that queries across the Sandstone,
Descent and Industrial Plant maps consistently expand mil-
lions of nodes. A* expands substantially more nodes across
the three new voxel benchmarks than the Warframe maps.

Figure 9 highlights the relative size of the frontier (the
number of nodes generated during search) versus the num-

ber of nodes expanded during search. Results show that
much of 3D search across the benchmarks expand a median
of one node out of a 26-connected neighbourhood. The sand-
stone benchmarks are an exception, where there are substan-
tially more nodes generated per node expanded. This sug-
gests greater fill-in behaviour.

Conclusion
3D search using voxel grids is an increasingly important
technological enabler in areas such as drone navigation,
pipe-routing and video games. Yet, the research literature in
this area contains few publicly-available data sets that can be
used for evaluation purposes. Access to a diverse and chal-
lenging set of problems is necessary for understanding the
strengths and weaknesses of competing planners, and for
measuring the efficacy of these algorithms for solving the
types of problems that appear in practice.

In this work, we introduce three new and diverse voxel
benchmark data sets which are drawn from real applications.
Each benchmark has distinct geometry and features unique
types of problems that reflect the challenges of a specific do-
main. We produce 46 maps with a total of 92,000 problem
instances. Our Sandstone benchmarks are not dissimilar to
random obstacle maps and feature narrow and winding cor-
ridors with little symmetry. Our Descent benchmarks feature
interior pathfinding in labyrinthine hallways and rooms de-
signed specifically for 3D agent traversability. Our Industrial
Plant layout benchmarks simulate real pipe-routing prob-
lems, and present similar geometry to aerial drone naviga-
tion through cityscapes.

An important role of good benchmarks is to facilitate
fair and informative comparisons between competing ap-
proaches. On the one hand, benchmark problems should rep-
resent the full spectrum of challenges in a target domain; on
the other hand, benchmarks should control for confounding
factors and biases that can produce misleading conclusions
when making comparisons between competing techniques.
In this work, we consider how to generate representative sets
of benchmark problems, and we examine directional bias, a
potential source of experimental error that can produce mis-
leading conclusions. We show how directional bias arises,
how it can influence experimental results, and we propose
a novel strategy for controlling the bias so that practitioners
can draw stronger conclusions.

One potential direction for future work is to generate
alternate test sets that further differentiate problem types
within a domain (e.g., queries with long paths, queries be-
tween specific areas, or queries intended to produce patho-
logical behaviours in pathfinding algorithms). This would al-
low practitioners to more deeply investigate points of differ-
entiation between algorithms. Another possibility is to op-
timise for the size of the test set: namely how large does
a benchmark need to be to provide an indicator of perfor-
mance on a specific map? This would reduce the computa-
tional burden required to make comparisons.

We hope that the benchmarks produced in this work will
foster interest and facilitate the development of innovative
methods for solving 3D search problems in voxel domains.
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Benchmark # A* Search Time (ms) JPS-3D Search Time (ms)
Q1 Med Q3 Max Q1 Med Q3 Max

Warframe
Test 2 6.71e-2 1.82e-1 1.15 6.12e1 1.13 1.67 2.03 1.05e3
Standard 38 4.87e-1 2.58 4.03e1 1.65e4 1.37 5.23 2.20e1 1.82e4
C-maps 4 3.35e2 3.50e3 1.58e4 1.06e6 1.36e2 1.56e3 1.08e4 2.85e5

New
Sandstone 11 5.50e2 1.21e3 1.91e3 1.17e4 3.80e2 8.33e2 1.37e3 8.99e3
Descent 30 9.19e2 1.91e3 3.41e3 2.16e4 1.33e2 3.80e2 934e2 6.13e3
Plants 5 6.92e1 5.52e2 2.05e3 4.19e4 1.99e1 1.48e2 7.67e2 1.47e4

Table 2: Search time performance across each benchmark by A* and JPS-3D search. Column-highest values are bold.
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(a) Sandstone: BanderaGray
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(c) Industrial Plants: Plant04

Figure 7: Representative problem selection across each benchmark. Problem instances are ranked according to A* node expan-
sions and a sub-sample is selected via. either uniform sampling (dashed blue line) or k-means clustering (red line).
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Figure 8: Box plots of nodes expanded by A*. This is a com-
mon measure of problem difficulty (higher means harder).
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Figure 9: Box plots of nodes generated per expanded by A*.
Lower values indicate greater fill-in behaviour in the frontier.
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