
The League of Robot Runners:
Competition Goals, Designs, and Implementation *

Shao-Hung Chan1, Zhe Chen2, Teng Guo3, Han Zhang1, Yue Zhang2,
Daniel Harabor2, Sven Koenig1, Cathy Wu4, Jingjin Yu3

1 University of Southern California, USA. 2 Monash University, Australia.
3 Rutgers University, USA. 4 Massachusetts Institute of Technology, USA

{shaohung, zhan645, skoenig}@usc.edu, {zhe.chen, yue.zhang, daniel.harabor}@monash.edu,
{gt286, jingjin.yu}@cs.rutgers.edu, cathywu@mit.edu

Abstract

In this paper, we introduce the goals, designs and implemen-
tations of the League of Robot Runners (LoRR) 1, a competi-
tion to foster and advance research area in the area of Multi-
Agent Path Finding. LoRR aims to: (i) identify the core chal-
lenges for solving MAPF; (ii) develop suitable benchmark
instances; (iii) evaluate algorithmic performance in the area
and; (iv) track the state-of-the-art. The competition provides
a standardised system to develop, evaluate, and compare al-
gorithmic techniques. Submissions, solutions and problem in-
stances from the competition are open sourced, to lower barri-
ers, promote dissemination and enable further advancements.

Introduction
Multi-Agent Path Finding (MAPF), an important problem
for many new and emerging industrial applications. The
problem asks us to coordinate a team of moving agents,
from start to target, collision-free. Research in this area has
grown exponentially in recent years, with many different
models and many algorithmic solutions having been pro-
posed. These works often place emphasis on different parts
of the problem, leading to a diversity of perspectives. For
example, MAPF can be modelled as a planning problem
and solved with optimality guarantees. It can also be mod-
elled from a robotics perspective, where execution consid-
erations are considered the foremost priority. Although each
approach is valid, the divergence makes it difficult for prac-
titioners, esp. new entrants to the growing field, to have a
clear picture of the main challenges in the area, the currently
leading techniques and what is considered state-of-the-art on
those topics. LoRR aims to lower barrier for practitioners to
enter this area by addressing the following goals in its design
and implementation:

(G1) Identifying core challenges: MAPF is often solved
using a simplified model of operations (Stern et al. 2019).
This allows researchers to focus on main combinatorial dif-
ficulties of the problem: the interactions between agents.
However these simplifications can lead to a disconnect, be-
tween computed solutions and the execution environments

*Lex order, organising committee then chairs
1Competition website: https://www.leagueofrobotrunners.org/

Video demo: https://youtu.be/Y-v3h_27PXk

where those solutions must be deployed. Therefore, the first
goal of LoRR is to identify the challenges that cause the
most “disconnections". In its inaugural year (2023) LoRR
identifies two main challenges:

• (1) Turn actions: In MAPF, robots are often modelled as
rotationally invariant agents with unit action costs. This
model is disconnected from many applications, where
turning actions can substantially increase achieved exe-
cution costs (Zhang et al. 2023).

• (2) Online lifelong problem: In MAPF, the problem is
one-shot and solved entirely offline. Yet real applications
are lifelong and online: agents receive new tasks upon ar-
rival and they must be constantly planned and replanned,
so as to maximise a throughput objective.

(G2) Standardised benchmarks: MAPF solvers are
evaluated on well known benchmark sets (Stern et al. 2019),
but these problems are not reflective of practical applica-
tions. Researchers interested in more realistic settings must
therefore generate new problems ad-hoc, often for a specific
experiment or problem setting. These problems are not col-
lected or tracked, making further evaluation and comparison
extremely challenging. Thus our second goal is to develop
new standardised benchmarks, which more closely model
real applications. We consider different domains, map lay-
outs, and task distributions. These problems offer a variety
of meaningful challenges for the community and facilitate
direct comparisons between competing techniques.

(G3) Common API: It is generally time-consuming
to evaluate/compare/reuse open-source MAPF implementa-
tions, as each solver has unique conventions, models, for-
mats and programming styles. We propose a standardised
planning and visualisation system, with common conven-
tions, formats and APIs, which allow users to build, run,
evaluate and compare new and existing planners.

(G4) Tracking Progress: Establishing solver perfor-
mance poses unique challenges: there are many potential
competitors and experimental setups vary significantly from
one paper to the next. Our fourth goal is is to develop an
online evaluation system that can act as a common denomi-
nator. We further archive and open-source the submitted im-
plementations and best solutions, which helps practitioners
build on successful ideas and track progress over time.



Figure 1: System Overview. Each component is explained in each section.

Problem Model
Similar to classical MAPF, our problem is situated on a 4-
connected grid with unit-cost actions and time-steps. Differ-
ent from classical MAPF, each agent has a facing direction
and must execute one of three possible actions: move for-
ward, wait in place or turn 90◦. We consider the problem to
be online (solvers are subject to timeout limits and agents
wait on timeout) and lifelong (a new task appears when an
agent finishes its current task). The objective is maximising
the total number of tasks finished over a given time horizon.

Benchmarks
We create problem instances using two types of maps: those
drawn from classical MAPF benchmarks (Stern et al. 2019)
(games, city and random layouts) and newly generated
maps from two industrial-inspired domains: fulfilment
(robots pick orders in a warehouse) and sortation
(robots move packages in a mail sortation centre).

Each problem instances comprises a map, an agent file
(specifying initial configurations) and a task file (specifying
goal locations, according to various distributions). Problem
sizes range from 100 agents up to 10,000 agents, depending
on the type of challenge. We also develop and open source
problem generators, which can be used to create new in-
stances with user-specified input parameters (e.g., different
map layouts, team sizes and agent/task distributions).

Planning System
Our system has two components: a simulator and a planner.
The simulator tracks the positions of agents on the map and
decides which agent is assigned what task. Each timestep,
the simulator calls the planner, asking for the next action
of each agent. The simulator checks if the set of planned
actions are valid (i.e., collision-free) and, if so, updates the
position of each agent – otherwise the agents wait in place.
The planner is an interface between the simulator and a
user-implemented solving technique. There are only two
functions for users to define: initialise, which facil-
itates map preprocessing, and and plan, which returns a
next set of actions for agents to execute. Both functions are
subject to time limits. In case the plan function does not re-
turn before the time limit is reached the simulation will pro-
ceed to the next timestep, and all agents will wait in place.
The planner and simulator are both written in C++. We also

provide planner bindings for Python, as an example of how
to integrate implementations written in other languages.
Input/Output: Our system takes benchmark problems as
input and produces corresponding output file. We record
planned and executed actions, planning errors (collisions),
and other simulation events. File formats are standardised
and well-documented. In addition, output files can be used
with PlanViz, our tool for offline analysis and visualisation.

PlanViz
Although there are many tools for visualising multi-agent
plans, few of them help users to contrast and explore plan-
ning and execution. We develop PlanViz to help fill this gap.

PlanViz helps visualise: (1) locations (and movements)
of agents at each timestep, (2) paths of agents, from their
start locations to locations at the planning horizon, (3) col-
lisions between pairs of agents, and (4) current and future
task assignments. For (3), to understand collisions, we la-
bel affected agents (all agents or user-selected pairs) and
jump to one timestep before the collision occurs. We show
the planned action and the executed action (from the simu-
lator). For (4), to understand task assignments, we label all
currently assigned, future assigned and finished locations.
This helps participants to better understand algorithm per-
formance for completing tasks. In addition, PlanViz can also
visualise solutions from MAPF Tracker (Shen et al. 2023), a
system that records best-known solutions to classical MAPF
problems. We provide tools to convert from that format.

Evaluation and Code Archives
LoRR utilises an online evaluation platform that allows par-
ticipants to submit and evaluate implementations at any time
before the competition deadline. A leaderboard is dynami-
cally updated to track the progress of the competition.

At the end of the competition, we collect all the imple-
mentations submitted and open-source these implementa-
tions as a code archive. We include code for each entry
on the final leaderboard and any submission that produces
a best solution for any evaluation instance. We also open-
source all best-known solutions. We believe these (code and
benchmark) archives can foster further research on the topic
of MAPF: by establishing state-of-the-art performance, dis-
seminating best-known results and lowering barriers into the
area. The latter is especially important for newcomers, so
they can quickly get started with a high-quality solver.



References
Shen, B.; Chen, Z.; Cheema, M. A.; Harabor, D. D.; and
Stuckey, P. J. 2023. Tracking Progress in Multi-Agent Path
Finding. ArXiv, abs/2305.08446.
Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T.; et al.
2019. Multi-agent pathfinding: Definitions, variants, and
benchmarks. In SOCS, volume 10, 151–158.
Zhang, Y.; Harabor, D.; Le Bodic, P.; and Stuckey, P. J. 2023.
Efficient Multi Agent Path Finding with Turn Actions. In
Proceedings of the International Symposium on Combinato-
rial Search, volume 16, 119–127.


