
Citation: Hassan, A.; Wallace, M.;

Moser, I.; Harabor, D.D. Snapshot-

Optimal Real-Time Ride Sharing.

Information 2024, 15, 174. https://

doi.org/10.3390/info15040174

Academic Editor: Katsuhide Fujita

Received: 10 February 2024

Revised: 17 March 2024

Accepted: 18 March 2024

Published: 22 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Snapshot-Optimal Real-Time Ride Sharing
Afzaal Hassan 1, Mark Wallace 2 , Irene Moser 1,* and Daniel D. Harabor 2

1 School of Science, Computing and Engineering Technologies, Swinburne University of Technology,
Melbourne, VIC 3122, Australia; afzaalhassan@swin.edu.au

2 Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia;
mark.wallace@monash.edu (M.W.); daniel.harabor@monash.edu (D.D.H.)

* Correspondence: imoser@swin.edu.au

Abstract: Ridesharing effectively tackles urban mobility challenges by providing a service compa-
rable to private vehicles while minimising resource usage. Our research primarily concentrates on
dynamic ridesharing, which conventionally involves connecting drivers with passengers in need of
transportation. The process of one-to-one matching presents a complex challenge, particularly when
addressing it on a large scale, as the substantial number of potential matches make the attainment of
a global optimum a challenging endeavour. This paper aims to address the absence of an optimal
approach for dynamic ridesharing by refraining from the conventional heuristic-based methods
commonly used to achieve timely solutions in large-scale ride-matching. Instead, we propose a novel
approach that provides snapshot-optimal solutions for various forms of one-to-one matching while
ensuring they are generated within an acceptable timeframe for service providers. Additionally, we
introduce and solve a new variant in which the system itself provides the vehicles. The efficacy of
our methodology is substantiated through experiments carried out with real-world data extracted
from the openly available New York City taxicab dataset.

Keywords: ridesharing; ridematching; shared mobility

1. Introduction

Traffic congestion is a global problem. While travel delays are the most visible conse-
quence of congestion, the economic toll it exacts reaches into the billions of dollars [1]. To
mitigate congestion costs, promoting shared private vehicles and mass public transport is
beneficial. These options are faster, more cost-effective, and have a lower carbon footprint.
However, limitations include less flexibility, constrained routes, variable service frequencies,
and limited availability. This research aims to develop better algorithmic techniques for
intelligent trip sharing. In this context, we introduce a novel algorithmic approach, Snap-
Pair, that optimises participant pairing in a ridesharing system. This adaptable approach
can be applied in various settings and under different policies. We implement SnapPair in
traditional role-based one-to-one matching scenarios, encompassing designated drivers and
riders, as well as in scenarios with flexible roles. Furthermore, we propose a new type of
ride matching scheme that involves a fleet of autonomous vehicles (AVs) or human-driven
cars providing on-demand door-to-door transportation. Passengers can request trips on
the spot; centralized algorithms then schedule vehicles and combine trips to maximise
efficiency. The system aims to reduce the vehicle hours traveled (VHT), thereby mitigating
congestion and associated costs. In this latter formulation, we assume the existence of a
fleet operator responsible for providing the vehicles to serve all trips generated by SnapPair.
These fleets can be operated by public or private entities, similar to UberPool or Lyft Shared
Rides. The proposed formulation envisions a future where car ownership becomes obsolete
and shared trips become the default mode of transportation for optimal vehicle utilisation.

We perform an experimental evaluation of SnapPair by applying it in an online fashion
to imitate the behaviour of commuters who book their journeys ad hoc in everyday life.

Information 2024, 15, 174. https://doi.org/10.3390/info15040174 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15040174
https://doi.org/10.3390/info15040174
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-7326-8110
https://orcid.org/0000-0002-1345-3901
https://orcid.org/0000-0001-6828-7712
https://doi.org/10.3390/info15040174
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15040174?type=check_update&version=2

Information 2024, 15, 174 2 of 17

New demand is included in the subsequent time window, and time windows are optimised
at regular intervals.

In addition, we devise and implement several matching policies that differ in their
level of eagerness to commit to a match. Our experiments evaluate their performance using
both classic role-based matching schemes and our new formulation.

Considering the dynamic nature of link costs, which can experience rapid fluctuations
throughout the day, we have taken an additional step by investigating an unconventional
scenario in which the matching algorithm itself performs the shortest path calculations.

2. Definitions

• Rider: A participant in the ride sharing system who wishes to be transported from
their origin to their destination within an announced time frame.

• Match: A pair of riders who share a vehicle on their trip.
• Snapshot Optimality: Attaining an optimal solution, defined as the maximum re-

duction in vehicle hours traveled (VHT), for a pairwise matching problem with a
fixed demand.

3. Previous Work

Peer-to-peer ride matching offers shared journeys to the participants while maximising
some global objective (usually savings in travel time) subject to the participants’ spatiotem-
poral constraints [2]. There are multiple variants of this problem; some classifications are
based on cardinality of matching (one-to-one, one-to-many, many-to-many), while others
are based on the roles the participants play (riders, drivers). These roles can be either fixed
or flexible [3].

One-to-one ride matching can be represented as a graph matching problem [3] in which
each participant is a node, potential matches are edges, and the edge weight indicates the
savings from the match. When roles are fixed, it becomes a maximum weighted bipartite
matching problem, while if the roles are flexible it can be formulated as a maximum weight
matching problem in general graphs. In the past, many polynomial-time algorithms have
been proposed to solve these problems optimally [4–7]. Recent studies with exact solutions
[8,9] have attempted the matching problem at a very small scale with up to few hundred
participants and a small number of locations.

Unlike in the above studies, real-world ride sharing problems are large-scale and
dynamic in nature [2] and require solutions in close to real time. In their landmark survey of
a decade ago, Agatz et al. [10] noted the lack of fast optimal solutions for large metropolitan
areas; since then, a substantial body of work has focused on developing fast solutions for
real-time large-scale ride sharing systems, especially for the one-to-one version. Catering to
the assumption of continuous travel requests, most studies are dynamic and use a rolling
time window approach [11]. To reduce complexity, previous studies have tended to publish
methods dividing the problem into smaller subproblems. Shen et al. [12] partitioned the
road network into grids, with every participant only being matched within their grid.
Xu et al. [13] made use of ellipses to bound possible locations for matches in order to avoid
removing the optimal solution during pruning; however, this approach requires equal
speed limits. A similar approach was taken by Masoud and Jayakrishnan [8]. A number of
approaches have used graph partitioning techniques [11,14]. The ride sharing problem has
been formulated as a linear program; at times this has been applied to a reduced search
space [11], while in other cases authors have used a time-out period to provide answers
within the specified time [15].

In other examples of heuristic approaches, Najmi et al. [16] used a clustering ap-
proach to investigate potential matches for riders in two sets of clusters: one based on
the riders’ origins, and the other on their destinations. Ketabi et al. [17] also employed a
clustering method to find matches for one-to-one matching. In their study, Ta et al. [18]
exclusively examined matches where the intersection of the driver and riders’ journeys
surpassed a predetermined threshold, typically set at 80%. However, they did not pro-

Information 2024, 15, 174 3 of 17

vide a rationale for the selection of this specific percentage. They chose matches using an
approximate method focused on maximising the shared route percentage. Li et al. [19]
approached the ridesharing problem by framing it as a vehicle routing problem, exploring
both one-to-one and many-to-one variations. Stressing the NP-hard nature of the problem,
they opted for a hybrid heuristic algorithm combining an insertion algorithm with tabu
search for quick solution generation. Additionally, they incorporated clustering to pair
participants within their respective clusters. Kleiner et al. [20] proposed an auction-based
mechanism for matching drivers and riders. Their approach prioritised either maximising
cost savings through reduced travel distance or achieving a high matching rate, but not
both simultaneously. Nourinejad and Roorda [21] presented an auction-based model in
which driver agents bid on riders and only willing riders accept the bids. Aissat and
Oulamara [22] solved the fixed roles matching problem heuristically, and introduced the
concept of intermediate meeting points to minimise detours for drivers.

Thus far, no published approach has solved dynamic one-to-one matching for large-
scale demand in time for an operating service. Tafreshian and Masoud [11] have come the
closest; however, their solution takes an impractically long time to compute an optimal
match. For example, when working with another instance of similar size from the same
dataset that we have utilised here, it takes roughly six minutes to solve for one-to-one
matching with flexible roles for a demand contained in a one-minute time window. To
address this shortcoming, they resorted to using a graph-partitioning heuristic to achieve
real-time solutions. Another issue with their approach is that, to reduce the computational
complexity, they introduce the concept of stations instead of providing door-to-door ser-
vice, thereby reducing the number of graph nodes to be considered. Thus, passengers are
expected to walk from their origin to the nearest station and board/disembark vehicles
there. Similar approaches include Fiedler et al. [23], Fielbaum [24], and Wang et al. [25].
While computationally advantageous, station-based approaches present limitations in
real-world scenarios. Notably, they might disadvantage individuals with mobility limita-
tions, elderly individuals, and those who are unable or unwilling to walk to designated
stations. Therefore, these methods represent a trade-off between computational efficiency
and inclusivity.

Lu et al. [26] is the most recent work in pursuit of optimality that we have come across.
They have proposed an exact methodology for addressing one-to-one matching with flexible
roles; however, it is crucial to highlight that their approach achieves optimality only for very
small instances. For problem instances involving ten participants their algorithm required
only a few minutes for completion, whereas experiments with 35 participants required
hours to solve. Consequently, it is evident that an optimal approach to one-to-one matching
that can provide solutions within practical time frames is absent from the literature.

Furuhata et al. [27] have postulated that an optimal approach to solving one-to-one
matching at large scale in an authentic setting would be a major breakthrough. In this
paper, we propose and empirically test such an approach.

Contributions

In this paper, we publish the following contributions:

• A fully implemented and tested new algorithm, SnapPair, that guarantees a snapshot-
optimal solution at each time point in a dynamic one-to-one matching problem. Snap-
Pair is more than two orders of magnitude faster than the current state-of-the-art.

• A novel formulation of the dynamic one-to-one matching problem in which riders
and vehicles are independent.
This new formulation is more complex due to the increased number of possible
matches. We call this formulation FreeMatch. We consider this formulation timely
and significant, particularly in light of research indicating that a higher number of
individuals have reported issues with crowded vehicles since the COVID-19 pandemic
compared to the prepandemic period [28–30]. With FreeMatch, our objective is to
establish a framework that optimally utilises standard commonplace vehicles with a

Information 2024, 15, 174 4 of 17

maximum capacity capped at two, enhancing the appeal of ridesharing in accordance
with travelers’ altered preferences following the COVID-19 pandemic.

• An extended algorithm, including a rematching procedure that pairs both new rid-
ers and riders whose previous match has been dropped off, with the objective of
optimising the use of vehicles available in the system.

• Experiments successfully applying the proposed algorithms to a problem size that is
relevant to fleet operators.

4. Methodology
4.1. Overview

One-to-one matching is a well established problem which involves participants bring-
ing their own vehicles, and can be viewed in two different versions. In the first version,
certain individuals are designated as drivers and have vehicles, while others are riders in
need of transportation. The second version assumes that all participants have vehicles, with
the matching system determining which individuals assume the roles of driver and rider.

In FreeMatch, every participant is a rider looking to be transported. Riders are
paired whenever possible. We assume the presence of a fleet operator who, based on their
internal business logic, assigns vehicles (autonomous or human-driven) to serve paired and
solo journeys facilitated by FreeMatch. Notably, FreeMatch finds particular relevance for
ridesourcing companies seeking optimal passenger pairings for pooled rides, exemplified
by services such as UberXShare [31]. This model, aiming to reduce customer fares through
ridesharing, accommodates up to two passengers per vehicle. SnapPair can be envisioned
as a tool that provides passenger pairings to a ridesourcing company while remaining
agnostic to the vehicle assignment process. This approach aligns with real-world scenarios,
as ridesourcing drivers have the option of accepting or rejecting trips. Consequently, it is
more efficient to prioritise the optimal combination of pairs and solo journeys while leaving
vehicle assignment to the fleet operator rather than potentially introducing inefficiencies by
assigning them to individual drivers/vehicles who might reject the assignment.

To identify potential matches for a rider, the system generates reachability graphs that
associate road network nodes with those riders who can pass through the node without
reaching their destination late along with the time interval that they can spend at each node.
The riders associated with the start node of rider r are the potential matches for r. This
helps with the creation of a match graph, which maps the riders who can reach each other’s
origins and destinations without violating timelines. The match graph is then translated to
a list of riders and their potential partners. These are translated into a linear program and
solved to optimality by an optimisation engine that identifies the optimal matches.

4.2. Parameters and Variables

The road network is represented as a graph G = (V, E), where E ⊆ V ×V and where
each edge (i, j) ∈ E has an associated and positive edge cost ecij indicating the travel time.
Based on these times, the system uses Dijkstra’s algorithm [32] to compute the shortest
paths between all pairs of nodes u, v in the graph, then records the time w(u, v). In our
experiments, we show that this can either be done once in advance or repeatedly for all
relevant pairs at the beginning of every iteration, with the choice based on the current
congestion-dependent edge costs.

Here, R is the set of riders; each rider r ∈ R has an origin or, destination dr, earliest
possible departure time ted

r , and latest possible arrival time tla
r .

For each rider r, the system computes the earliest possible arrival time
tea
r = ted

r + w(or, dr).
A match < j, k >, where j and k are riders, is feasible if j can pick up k and if both

riders depart after their earliest departure time and reach their destinations before their
latest arrival time. If j is on the way to picking up k, then either j or k may have to wait at
ok until the other party is ready. Waiting times are permitted as long as both riders arrive at
their destinations in time. For the sake of simplicity, pickup and dropoff are instantaneous

Information 2024, 15, 174 5 of 17

and do not incur any delay. Formally, the route route1(j, k) =< oj, ok, dk, dj > is feasible for
riders j and k if

max(ted
j + w(oj, ok), ted

k) + w(ok, dk) ≤ tla
k

and
max(ted

j + w(oj, ok), ted
k) + w(ok, dk) + w(dk, dj) ≤ tla

j .

The cost of this match is

cost1(j, k) = w(oj, ok) + w(ok, dk) + w(dk, dj)

if route1(j, k) is feasible and infinity otherwise.
The route route2(j, k) =< oj, ok, dj, dk > is feasible for riders j and k if

max(ted
j + w(oj, ok), ted

k) + w(ok, dj) ≤ tla
j

and
max(ted

j + w(oj, ok), ted
k) + w(ok, dj) + w(dj, dk) ≤ tla

k .

Its cost is cost2(j, k) = w(oj, ok) + w(ok, dj) + w(dj, dk) if route2(j, k) is feasible and
infinity otherwise.

Based on this, < j, k > is a feasible match if route1(j, k) or route2(j, k) is feasible, and
its cost is

cost(j, k) = min(cost1(j, k), cost2(j, k)).

For an unmatched rider, the cost is

cost(r) = w(or, dr).

We write F for the set of all feasible matches.
To minimise VHT (vehicle hours travelled), the model can be formulated in terms of

the variables M (the set of matched pairs) and U (the set of unmatched riders) as follows:

minimize

(
∑
j∈U

cost(j) + ∑
<j,k>∈M

cost(j, k)

)
subject to 1. M ⊂ F ∧U ⊂ R

2. R = U ∪
⋃

<j,k>∈M

{j, k}

3. U ∩
⋃

<j,k>∈M

{j, k} = ∅

4. ∀i, j, k ∈ R :< i, j >∈ M→ (< j, k >/∈ M ∧ (j ̸= k→< i, k >/∈ M)),

(1)

where the objective function minimises the cost of all paired and solo journeys. Constraint
1 stipulates that all matched pairs are selected from feasible pairs, while the unmatched
riders must belong to the set of riders. Constraint 2 stipulates that every rider in set R must
be included in either a matched pair or the set of unmatched riders. Constraint 3 ensures
that the matched pairs and unmatched riders are mutually exclusive sets, meaning that
their intersection is empty. Constraint 4 stipulates that each rider can appear in at most one
matched pair.

This model corresponds to both flexible roles and FreeMatch problems, where matched
riders are picked up by a dedicated vehicle at their origin and taken to their destination
using the shortest path. In FreeMatch, a vehicle is assumed to materialise instantly at the
origin of its first rider and disappear when no longer needed, while in the version with
flexible roles the vehicle is provided by one of the participants and stays with them.

Information 2024, 15, 174 6 of 17

The model is modified below to handle both driver and passenger roles. With fixed-
role ride matching, the driver is responsible for initiating the trip and providing the vehicle
for the passenger. In this variant, riders are divided into a set of drivers D and a set of
passengers P. A match < j, k > is now feasible only if j ∈ D and k ∈ P. Consequently, it is
computationally easier to generate the set F of feasible matches.

The model (1) for minimising VHT can be be modified as follows in order to cater to
the scenario with fixed roles:

minimize

(
∑
j∈U

cost(j) + ∑
<j,k>∈M

cost(j, k)

)
subject to 1. M ⊂ F ∧U ⊂ R

2. R = U ∪
⋃

<j,k>∈M

{j, k}

3. U ∩
⋃

<j,k>∈M

{j, k} = ∅

4. ∀i, k ∈ D ∧ ∀j, l ∈ P :< i, j >∈ M→ (< i, l >/∈ M∧ < k, j >/∈ M).

(2)

Constraint 4 enforces the exclusivity of rider-driver pairings, implying that a driver
assigned to a matched pair cannot be paired with another rider and vice versa.

4.3. Reachability Graphs

Many existing ridesharing studies use pruning mechanisms to speed up the matching
of travellers. Approaches include the use of grids [33,34] and geometric shapes [8,13].
These approaches are approximations, and may miss candidates with longer journeys and
more distant origins.

Here, we propose a pruning mechanism that preserves all possible matches. The
reachability graph algorithm identifies and records the nodes that a rider r can reach without
exceeding their deadline to reach their destination. Using the identified reachable nodes of
each rider, the road graph is annotated with the arrival and departure times of those riders
who can traverse each node of the road graph without missing their destination arrival
deadline tla

r for dr. This provides a fast mechanism to identify candidates for matches.
Algorithm 1 illustrates the simple procedure that is called for each rider r. The network

graph, origin or, destination dr, earliest departure time ted
r , and latest arrival time tla

r are
passed to the procedure. It begins to traverse the road graph at or and examines the
nodes in its immediate neighbourhood. For each node, the algorithm tests whether the
destination can be reached within the required time considering the need to travel to the
node from or and reach dr after departing from the node (line 5). If the node is included
in the reachability graph, then children need to be examined as well. If a node does not
qualify, then its neighbours are not examined. This renders the algorithm very efficient.

If a node is reachable, the information of the rider is stored along with and their earliest
arrival and latest departure times. The time interval that can be spent on the current node
is determined based on the time (cost) c(or, n) that it takes to reach it added to the earliest
possible departure time ted

r . The end of the interval can be calculated by subtracting the
time required to travel from the current node to the destination node c(n, dr) (line 6). This
method guarantees the preservation of the optimal solution within the search space, as any
additional deviation would result in r failing to meet the deadline.

4.4. Construction of the Match Graph

The construction of the match graph builds on the reachability graphs and road graph,
using annotated nodes to indicate which riders can traverse at specific times. The goal is
to compute all possible pairwise matches and store them as a graph in which every node
represents a rider, every edge is a possible match, and the direction of an edge denotes the
order of pickup. This graph builds on similar approaches used in other studies [15,35].

Information 2024, 15, 174 7 of 17

Algorithm 1: Creating a Reachability Graph

Data: G, (graph of road network), r, or, dr,ted
r , tla

r
Result: N, set of reachable nodes

1 N ←− ∅ /* Set initialisation */
2 P←− {or} /* Set for nodes to process. Start with or */
3 for n ∈ P do
4 P←− P \ {n}
5 if ted

r + cor ,n + cn,dr ≤ tla
r then /* tla

r can be met via n */
/* Store time and rider with the node */

6 n←− r, ted
r + cor ,n, tl

r − cn,dr

7 N ←− n
/* Store neighbours of n for examination */

8 P←− neighbours(n)

Algorithm 2 initially builds the nodes of the match graph from the list of riders;
then, for every rider r it retrieves all riders passing through r’s origin or. This is a simple
lookup operation, as every node holds the list of trips passing through it along with the
corresponding times (line 4). To establish a possible match, the next step verifies which
of the riders in these trips can either drop r to its destination or be dropped by r to their
destination (line 6). When a match has been established, it is added as an edge between the
corresponding riders, with the direction of the edge representing the order of pickup and
the weight of the edge representing the savings the match will provide.

Algorithm 2: Creating the Match Graph
Data: R, (set of all riders), N, (reachability graphs)
Result: MG, match graph

1 MG ←− R /* Riders become nodes of MG */
2 C ←− ∅ /* Set for candidate matches */
3 for r ∈ R do

/* Store riders that can reach or in candidate set C */
4 C ←− R ∈ N(or)
5 for c ∈ C do
6 if c ∈ N(dr) OR r ∈ N(dc) then /* c can reach r’s destination or r

can reach c’s destination */
/* Add edge from c to r */

7 MG ←− edgec,r

As we repeat these steps for every rider, all possible matches are found and stored. For
every rider r’s turn, only those matches are found where r is picked up. The other riders’
turns take care of any such matches where r performs the pickup.

4.5. Optimality

Our optimisation model includes information on all potential rider pairings and all
individual journeys, including their respective minimum costs. From this, we argue that an
optimal mathematical solver will select a combination of paired rides and solo journeys
that ensures the lowest overall cost.

Lemma 1. SnapPair records all possible pairings of riders.

Proof. We show that if it is possible for r1 to give a ride to r2, then r2 will appear in the list
of matches for r1.

Information 2024, 15, 174 8 of 17

For our road graph G, we use Dijkstra’s algorithm [32] to compute the shortest paths
between all pairs of nodes u, v in the graph and to record the optimal time w(u, v). Our
reachability graph method records all possible nodes that r1 can visit en route to dr1. This
is determined by starting at or1 and expanding (a) as follows: all neighbours of all locations
which can be reached with time ted

r1 + w(or, n) + w(n, dr) ≤ tla
r1, where n denotes a node

that is expanded during this traversal. From the correctness and completeness of Dijkstra’s
algorithm, all locations L satisfying (a) are returned and the returned set includes all
locations that can be reached by r1 en route to d1. If rider r2 starts at any other location
n′ /∈ L, then ted

r1 + w(or, n′) + w(n′, dr) > tla
r1, r1 arrives late, and r1 cannot feasibly pick up

r2 (i.e., r2 does not appear in the list of matches for r1).

Lemma 2. SnapPair records the minimum cost for each individual journey or potential pairing.

Proof. For any possible pairing between two riders r1 and r2, we show that our algorithm
calculates the lowest-cost journey for both riders to reach their destinations in time. Suppose
that rider r1 picks up another rider r2; when set L for r1 has been ascertained, SnapPair
checks for each possible rider r2 that starts at a location n ∈ L, whether it is feasible for r1
to pick up r2, and if so, at what cheapest cost. The cost is determined by the route chosen
for the journey. For each potential match ⟨r1, r2⟩, three routes are possible:

1. route1(r1, r2) = ⟨or1, or2, dr2, dr1⟩, having a cost of costroute1(r1, r2) = w(or1, or2) +
w(or2, dr2) + w(dr2, dr1);

2. route2(r1, r2) = ⟨or1, or2, dr1, dr2⟩, having a cost of costroute2(r1, r2) = w(or1, or2) +
w(or2, dr1) + w(dr1, dr2) and only if (dr1 = or2) ;

3. route3(r1, r2) = ⟨or1, dr1, or2, dr2⟩, having a cost of costroute3(r1, r2) = w(or1, dr1) +
w(or2, dr2).

The cost of route3 is equal to the cost of the two direct routes router1 = ⟨or1, dr1⟩
incurring cost(r1) and router2 = ⟨or2, dr2⟩ with cost(r2), and as such is subsumed by the
solution in which r1 and r2 travel alone. For this reason, it is not considered. If neither
route1(r1, r2) or route2(r1, r2) is feasible, r2 is not added to the list of possible riders for r1
to pick up. If either route is possible, then the corresponding cost is recorded and the match
⟨r1, r2⟩ is included in the match graph. If both routes are possible, then the minimum cost
for it, denoted as cost(r1, r2) = min(costroute1, costroute2), is recorded along with shortest
route.

Theorem 1. The computed solutions are globally optimal.

Proof. Lemmas 1 and 2 establish that the mathematical optimiser is provided with every
conceivable individual journey and pairing, each accompanied by its lowest cost. The
model’s constraints guarantee that every rider is either chosen for a solo trip or included
in a matched pairing. The optimiser returns the arrangement that best minimises costs,
yielding the optimal solution. This solution is derived using a branch-and-bound approach,
ensuring the return of an optimal combination, though achieving this guarantee may entail
exploring all potential combinations.

4.6. Dynamic Optimisation and Rematching

Dynamic optimisation handles new demands within a rolling time horizon. When
a new demand is introduced at time t, the system simulates the situation up to t and
determines which existing riders can be considered for the optimisation iteration.

We introduce the notion of slack for riders, which is the difference between the latest
and earliest possible arrival times. The slack for an unmatched rider is

slackr = tla
r − tea

r . (3)

Information 2024, 15, 174 9 of 17

For each unmatched rider r, reoptimisation is possible if t− ted
r < slackr. In this case,

ted
r is updated to t.

A vehicle currently in transit with matched riders ⟨j, k⟩may be eligible for multiple
matches if the remaining rider is matched again after dropping off the first rider. Thus,
the departure location and earliest departure time for matched riders ⟨j, k⟩ in transit are
updated according to the current trip leg and position, as follows:

• If the current leg ends with dj arriving there at time tarr, then ok is updated to dj and
ted
k is updated to tarr; rider k is added to the set of drivers D and rider j is dropped

from R.
• If the current leg ends with dk arriving there at time tarr, then oj is updated to dk and

ted
j is updated to tarr; rider j is added to the set of drivers D and rider k is dropped

from R.

Riders may request a ride with advance notice of τ minutes, where τ denotes the time
before their earliest departure time ted

r of a rider r becomes known to the system.
Newly arrived riders are added to R. The earliest departure time and origin for in-

transit riders is updated to the current time t and the rider’s current location. When the
participants in the iteration have been determined, the reachability and match graphs are
reconstructed while enforcing the constraint that

∀⟨j, k⟩ ∈ R : k ∈ Rt → ⟨j, k⟩ /∈ F,

where Rt denotes the riders in transit.
This implies that a modification of the match graph construction outlined in

Algorithm 2 is implemented for riders already in transit. These riders are exempt from the
need to seek potential candidates who can pick them up, as they are already in transit; thus,
they are only considered for such matches where they will be performing the pickup.

For matching variants in which the participants provide vehicles, i.e., fixed roles and
flexible roles, an additional constraint is enforced when constructing the match graph:

∀⟨j, k⟩ ∈ R : j ∈ Rt ∧ ⟨j, k⟩ ∈ F →
route(j, k) = ⟨oj, ok, dk, dj⟩.

This ensures that the vehicle stays with the participant who provided it. The constraint
disallows routes such as ⟨oj, ok, dj, dk⟩, where the last person to be dropped off was not the
one who brought the vehicle. Accordingly, the optimal pairing of riders that minimises the
total cost, as in the model (1), results in a snapshot optimal solution.

4.7. Eager and Lazy Optimisation

Regardless of the type of matching, practitioners can choose whether matched riders
should leave immediately or wait in situ for as long as their schedule allows. This “lazy
optimisation” opens up the possibility of improving the match for better savings of VHT
(Vehicle Hours Travelled).

In case “eager optimisation” is chosen for a match ⟨j, k⟩, the time of arrival at ok is
ted

j + w(oj, ok). Similarly, the pair departs from ok at max(ted
j + w(oj, ok), ted

k) and arrives at
the first dropoff location by the shortest route.

However, for “lazy optimisation” the time of departure from oj is the latest possible
time consistent with arriving at both destinations in time. For example, on route
r1(j, k) = ⟨oj, ok, dk, dj⟩, the departure time from oj would be

tdep
j = min(tla

k , tla
j − w(dk, dj))− w(ok, dk)− w(oj, ok).

Information 2024, 15, 174 10 of 17

When reoptimising at time t, if t < tdep
j , then oj remains as before; however, if t > tdep

j ,
then the match ⟨j, k⟩ cannot be changed. Thus, j and k are dropped from the set of riders R
and begin their combined trip.

4.8. Dynamically Changing Edge Costs

Traffic congestion varies during the day, causing prerecorded costs for specific time
periods to potentially become outdated. Thus, we examine the impact of link costs changing
after each time window. While updating edge costs at each reoptimisation is slower, it
provides optimal solutions within an acceptable timeframe for fleet operators. Dijkstra’s
algorithm [32] is used for all shortest path calculations, irrespective of whether the costs
are precomputed or generated during the matching algorithm. While the majority of
studies favour the first option, a few have incorporated shortest path calculations within
the matching algorithm. However, these studies have typically conducted matching on a
smaller scale or relied on heuristics [18,34].

In addition to recalculating all shortest paths, changing edge costs require recomputing
the slacks for unmatched riders and the predicted departure and arrival times for matched
riders. For lazy optimisation, dynamically changing edge costs may inevitably cause some
riders who started their trips as late as possible to arrive late. However, for other riders the
changed edge costs result in reoptimisations that enable them to arrive on time. Naturally,
if the edge costs increase, the total VHT increases as well.

5. Experiments
5.1. Case Study

In our study, we used the New York City taxicab dataset [36] as a case study. This
dataset is favoured for shared mobility studies due to its provision of GPS coordinates for
requests instead of zones [37]. The road network in Manhattan, New York City consists
of 4484 nodes and 8839 edges with an average edge distance of 186 m. Unlike previous
studies that employed designated pickup/drop-off points [11], SnapPair considers every
node for pickup and dropoff. For edge costs, we compute free-flow travel times in seconds
by dividing edge length by the maximum allowed speed, following similar methods in
other research [38]. Our travel demand consisted of 23,981 requests covering the hour-long
morning peak from 8–9 a.m. on 1 May 2013, a working Wednesday. Under free-flow condi-
tions, commuters traveling independently in their own vehicles would spend 1800 h in total
transportation time. In our simulation, we introduced new demand every minute during a
one-hour period. The notice period for all requests was set to one minute, mimicking the
behavior of ride-hailing service users who request a ride when they need it. On average,
each minute in the simulation included around 400 new riders, with a maximum of 444 new
riders occurring in any minute. All requests originated and terminated within Manhattan.
Each request was assumed to have one rider, following assumptions in previous work [15].
Vehicle capacity was capped at two passengers in all experiments. For experimental evalu-
ation of the system, we first applied SnapPair to the classic one-to-one matching scenario,
then to our new formulation called FreeMatch with vehicles provided. We produced results
for both online and offline settings and with different slack levels achieved by modifying
riders’ latest arrival times. The resulting slack levels are percentages of the shortest rider
journey. In the offline experiments, we assumed full advance knowledge of travel demand,
which is a rarity in real-world situations. We followed prior research [39] to set a baseline
optimum for our ridesharing system. Additionally, we assessed the following matching
policies in order to present their impact on the system’s performance:

• Eager departure without rematching: In this approach, as soon as the optimal set of
matches for a specific time window is identified, they are immediately put into action;
the initial riders in these matches begin their journey right away, and the successfully
matched riders are not subject to rematching even if they become available after their
match is dropped off. Unmatched riders, however, stay in the queue, awaiting future
rounds of matching for as long as their deadlines allow.

Information 2024, 15, 174 11 of 17

• Lazy departure without rematching: Matched participants delay committing to the
first optimal match offer if it remains valid in the next iteration, allowing them to
potentially be paired with someone else for greater system-wide savings. If waiting
would invalidate the match, participants commit and depart. Riders are not rematched
even if they become available after dropping the other rider in the match.

• Eager departure with rematching: Under this policy, participants commit to the first
presented optimal match, but can be rematched after the first rider in the match is
dropped off (potentially multiple times). Unmatched riders wait until their slack runs
out before departing on their own without being matched.

• Lazy departure with rematching: Matched participants delay committing to a match
as long as it remains valid in the next iteration. They can be rematched after the first
match. Unmatched riders wait until their slack is fully utilised while waiting to be
matched, then depart on their own.

We ran the experiments on a Lenovo laptop with 16 GB RAM and a 1.80 GHz processor.
The implementation was carried out in Java using the JgraphT library [40] for graph representa-
tions. To solve the linear programming formulations, we used Minizinc [41] and Gurobi [42].

5.2. One-to-One Ridematching with Fixed Roles

First, we solve the more established formulation where the roles of driver and passen-
ger are fixed. Rematching is avoided to match the formulations in prior studies.

Table 1 shows the result of this matching approach. The slack column indicates
how much extra time a traveller is prepared to spend on their trip as a percentage of
the shortest travel time possible given their origin and destination. The time column
indicates the average time in milliseconds for optimising a time window, calculated as
the average optimisation time of the 60 time windows of one minute each in an hourly
dataset, including the preoptimisation steps. Matches denotes the number of matches made
between pairs of travellers and VHT the vehicle hours travelled.

Table 1. Eager departure compared to lazy departure; roles are fixed.

Time (Milliseconds) Matches VHT (h)
Slack

Eager Lazy Eager Lazy Eager Lazy
10% 325 334 356 356 1781 1781
20% 372 388 1494 1494 1707 1707
30% 447 467 3151 3146 1607 1607
40% 554 642 4803 4774 1521 1521
50% 690 860 6132 6112 1464 1461

Lazy departure leaves matched drivers waiting at their respective origins until their
slack runs out. During this time, the pairs may be split up and matched again if this leads
to greater savings than the original match. It is no surprise that the eager approach takes
less time to optimise, as fewer riders remain for the next iteration. The VHT results for the
lazy and eager approaches are nearly identical here. This similarity is primarily due to the
comparable number of potential matches between the two approaches, especially at lower
levels of slack. However, a significant difference emerges at 50% slack, where the eager policy
results in an average of 443 potential matches per minute while the lazy approach offers
688 potential matches every minute to choose from, as shown in Table 2, which shows the
average numbers of riders and potential matches for every optimisation window.

Information 2024, 15, 174 12 of 17

Table 2. Average number of riders and potential matches during a time window; roles are fixed.

Average Riders Potential Matches
Slack

Eager Lazy Eager Lazy
10% 409 409 7 7
20% 519 520 36 36
30% 612 621 109 120
40% 660 709 244 308
50% 681 749 443 688

5.3. One-to-One Ride-Matching with Flexible Roles

Tables 3 and 4 present the results of the experiments that match travellers
one-to-one while assuming that the rider one who starts the journey provides the vehicle
(i.e., “flexible roles”).

Table 3. Eager departure compared to lazy departure; the driver is decided after the match and there
is no rematching after the first drop-off.

Time (Milliseconds) Matches VHT (h)
Slack

Eager Lazy Eager Lazy Eager Lazy
10% 371 397 1316 1316 1724 1724
20% 497 509 4112 4113 1547 1547
30% 708 751 6819 6803 1405 1404
40% 1016 1362 8501 8463 1337 1328
50% 1413 2985 9553 9451 1307 1287

Table 4. Eager departure compared to lazy departure; the driver is decided after the match and may
be rematched after dropoff.

Time (Milliseconds) Matches VHT (h)
Slack

Eager Lazy Eager Lazy Eager Lazy
10% 362 395 1321 1321 1722 1722
20% 470 478 4147 4146 1534 1535
30% 696 738 6953 6925 1389 1384
40% 1049 1373 8800 8661 1317 1304
50% 1518 2742 10,016 9715 1287 1253

Table 3 shows the results of the algorithm that does not match a driver with a new
passenger after they have dropped off the previous passenger. At up to 30% slack, the
optimisation of a time window takes less than a second for an average of over 400 travellers
per time window. Although eager departure produces slightly (at most 1%) more matches,
lazy departure provides better cost savings, suggesting that the quality of the matches
is better. The differences between the gains in VHT is meager at up to 30% slack, with
meaningful differences only observed above 40% slack. Compared to fixed roles, in the
case of 50% slack the policy of flexible roles sometimes provides more than three times the
number of matches, and at worst one and half times the number of matches. The VHT is
between 3% and 12% shorter when compared to the flexible policy without rematching.

Table 4 shows the results when the algorithm differs from Table 3 in that it rematches
the drivers after they have dropped off the rider they were previously matched with. While
rematching does not appear to affect the runtime, it leads to significant (2–34 h) savings in
VHT. Overall, rematching leads to a 3% increase in the number of matches at 50% slack when
comparing the lazy option with rematching to the lazy option without rematching (9715 vs.
9451). This saves 34 h of system travel time (1253 compared to 1287).

Information 2024, 15, 174 13 of 17

5.4. Ridematching with Vehicles Provided (FreeMatch)

Tables 5 and 6 contain the same result columns as Tables 3 and 4, except under the
assumption that the vehicle is provided by the system rather than belonging to either traveller.

Assuming vehicle provision allows for more matches by permitting the same traveler
to start and end their journey first. On average, this results in 2.13 times as many potential
matches per iteration compared to the version with flexible roles. Consequently, it is
expected that both eager and lazy departure will have longer running times. A comparison
of the run times in Table 5 (compared to Table 3) and Table 6 (compared to Table 4)
illustrates this.

The assumption that vehicles appear when needed without the need to designate a
driver leads to significant further savings in travel time. As a consequence, the eager policy
creates slightly more savings in travel times for 20% and 30% slack, suggesting that there
are plenty of good options to choose from without reoptimising existing pairs of riders.

Table 5. Eager departure compared to lazy departure; the vehicle is provided and there is no
rematching after the first dropoff.

Time (Milliseconds) Matches VHT (h)
Slack

Eager Lazy Eager Lazy Eager Lazy
10% 391 397 1929 1929 1692 1692
20% 587 612 5339 5245 1489 1494
30% 995 1134 7966 7743 1357 1361
40% 1621 2455 9420 9119 1300 1297
50% 2424 6067 10,271 9764 1279 1269

Table 6. Eager departure compared to lazy departure; the vehicle is provided and the remaining rider
may be rematched after the first is dropped off.

Time (Milliseconds) Matches VHT (h)
Slack

Eager Lazy Eager Lazy Eager Lazy
10% 390 394 1966 1966 1689 1689
20% 607 614 5594 5479 1474 1478
30% 1064 1181 8536 8221 1335 1339
40% 1819 2735 10,338 9706 1274 1267
50% 2723 7147 11,519 10,529 1251 1226

The best results (a VHT of 1226) when the vehicle is provided as a service are achieved
when allowing 50% slack and applying a lazy policy with rematching. The second-best
option only differs in the way the vehicle is provided; requiring a driver while applying 50%
slack and a lazy policy with rematching achieves a VHT that is 27 h, or 2% longer (1253 h),
whereas providing a vehicle and refraining from rematching takes 43 h longer. These
results suggest that the most significant contributors to the savings are: (1) rematching;
(2) providing a vehicle; and (3) lazy departure.

5.5. Comparison with Static Formulation

Approaches using a dynamic rolling time window typically yield inferior results
compared to static offline approaches that have complete information; however, offline
optimisation may not always be feasible in ridesharing due to last-minute travel decisions
by riders. Nonetheless, offline optimisation results can be used as a baseline. Figure 1
displays a comparison between a subset of policy combinations and 40% slack against the
results of offline optimisation using the same dataset. All results apply the lazy departure
approach and demonstrate small differences compared to offline optimum across the four
settings (left to right). For flexible roles without rematching, the online formulation is only
7.18% costlier than the offline optimum. When the vehicle is provided by a service and

Information 2024, 15, 174 14 of 17

there is no rematching, this difference is 7.74%. For flexible roles with rematching, this
value is 5.24%. Finally, when the vehicle is provided by a service and rematching is used,
the online performance is only 5.23% from the true optimum.

5.6. Impact of Shortest Path Calculations on the Matching Algorithm’s Performance

The previous experiments used prestored shortest path calculations. This is a reason-
able approach in real-world settings, where average travel times on urban roads during
specific hours are predictable. However, we now consider a scenario where shortest path
calculations are necessary due to unavailability of prestored link costs and the cost of
each trip must be predicted at the start using the current link cost information. For these
simulations, we increased the cost of half the links by 0.5% every minute. In this scenario,
the reachability and match graphs are constructed using a travel function that accounts for
real-time travel time rather than relying on initial shortest path calculations. Compared to
the other experiments with an overall transport cost of 1800 h, the altered link costs result
in an increase to 1928 h.

Table 7 shows that the matching algorithm performs well with the eager departure
policy, even under these challenging conditions. It would arguably be considered acceptable
for real-life matching service providers, taking a maximum of 19.5 s to optimally match a
minute’s worth of demand.

0

200

400

600

800

1000

1200

1400

Flex_no_rm Svc_no_rm Flex_rematch Svc_rematch

Static Dynamic

Figure 1. Comparison with static.

Table 7. Eager departure applied to changing link costs; the vehicle is provided and the remaining rider
may be rematched after the first is dropped off. Shortest path calculations are performed within the
matching algorithm.

Slack Time (Milliseconds) Matches VHT (Hours)
30% 13,044 6654 1499
40% 18,118 9156 1357
50% 19,575 10,731 1293

6. Conclusions

Matching drivers to riders through a ridesharing service presents a scalability chal-
lenge. Previous solutions have broken the problem down into distinct regions, reduced the
number of pickup points, or used incomplete search methods. Having precomputed the
shortest path cost between each pair of points in the ridesharing area, this paper presents
an algorithm that links each rider to all of their possible matches. Consequently, even when
new ridesharing requests arise every minute, optimal pairings can be computed in seconds.
Indeed, the computation time is so short that it is possible to recompute the shortest paths
dynamically at each time point and successfully handle dynamic link costs while retaining

Information 2024, 15, 174 15 of 17

optimality computed within 20 s. This highly efficient implementation supports extensions
to the basic ridesharing matching service, with experimental results showing a potential
contribution to congestion reduction on city streets. First, if riders are flexible about using
their own vehicle or riding as a passenger, savings can be increased by up to 12%. Second,
when the “slack time” overhead for sharing increases from 10% to 50%, the number of
matches increases five-fold, which reduces the total vehicle hours travelled (VHT) by 27%.
Third, if the vehicle used for transport is not linked to any of the passengers (by using an
automated vehicle, for example), the same vehicle can match sets of up to seven riders even
with a limit of two occupants at any time. In this case, the VHT cost is reduced by over a
third for lower slack times. For 50% slack there is some additional reduction, though at
most only 10% more.

Finally, we compared two separate policies and the presence of absence of rematching:

• Eager or Lazy
A trip can either be started “eagerly” as soon as a match is found, or delayed “lazily”,
in which case the slack time enables the trip to be delayed until the next update of
demands (after one minute) to check for a better option.

• Rematching
When one of a pair of travellers has been dropped off, the remaining traveller can be
paired again with a new traveller.

Among these improvements, the rematching approach has the most beneficial impact
on the total hours travelled. Providing a vehicle from an outside service was the next most
impactful measure. Our experiments showed significant benefits of larger slack times for
all studied ridesharing variations. Automated vehicles offer substantial advantages with
low slack times. Additionally, lazy starting and rematching yield comparable benefits, with
rematching showing slightly better savings in terms of vehicle hours travelled when using
automated vehicles.

Author Contributions: Conceptualization, A.H., M.W., D.D.H. and I.M.; methodology, A.H., M.W.,
D.D.H. and I.M.; software, A.H.; validation, A.H.; formal analysis, A.H., M.W. and I.M.; investigation,
A.H., M.W., D.D.H. and I.M.; resources, A.H., M.W. and I.M.; data curation, A.H.; writing—original
draft preparation, A.H., M.W., D.D.H. and I.M.; supervision, M.W. and I.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by the Australian Government through the Australian
Research Council’s Discovery Projects funding scheme (project DP190100013).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Goodwin, P. The Economic Costs of Road Traffic Congestion; UCL (University College London), The Rail Freight Group: London, UK, 2004.
2. Martins, L.d.C.; de la Torre, R.; Corlu, C.G.; Juan, A.A.; Masmoudi, M.A. Optimizing ride-sharing operations in smart sustainable

cities: Challenges and the need for agile algorithms. Comput. Ind. Eng. 2021, 153, 107080. [CrossRef]
3. Tafreshian, A.; Masoud, N.; Yin, Y. Frontiers in service science: Ride matching for peer-to-peer ride sharing: A review and future

directions. Serv. Sci. 2020, 12, 44–60. [CrossRef]
4. Hopcroft, J.E.; Karp, R.M. An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 1973, 2, 225–231.

[CrossRef]
5. Fredman, M.L.; Tarjan, R.E. Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 1987,

34, 596–615. [CrossRef]
6. Edmonds, J. Maximum matching and a polyhedron with 0, 1-vertices. J. Res. Natl. Bur. Stand. B 1965, 69, 55–56. [CrossRef]
7. Gabow, H.N.; Tarjan, R.E. Faster scaling algorithms for general graph matching problems. J. ACM 1991, 38, 815–853. [CrossRef]

http://doi.org/10.1016/j.cie.2020.107080
http://dx.doi.org/10.1287/serv.2020.0258
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1145/28869.28874
http://dx.doi.org/10.6028/jres.069B.013
http://dx.doi.org/10.1145/115234.115366

Information 2024, 15, 174 16 of 17

8. Masoud, N.; Jayakrishnan, R. A real-time algorithm to solve the peer-to-peer ride-matching problem in a flexible ridesharing
system. Transp. Res. Part B Methodol. 2017, 106, 218–236. [CrossRef]

9. Chen, W.; Mes, M.; Schutten, M.; Quint, J. A ride-sharing problem with meeting points and return restrictions. Transp. Sci. 2019,
53, 401–426. [CrossRef]

10. Agatz, N.; Erera, A.; Savelsbergh, M.; Wang, X. Optimization for dynamic ride-sharing: A review. Eur. J. Oper. Res. 2012, 223, 295–303.
[CrossRef]

11. Tafreshian, A.; Masoud, N. Trip-based graph partitioning in dynamic ridesharing. Transp. Res. Part C Emerg. Technol. 2020,
114, 532–553. [CrossRef]

12. Shen, B.; Huang, Y.; Zhao, Y. Dynamic ridesharing. Sigspatial Spec. 2016, 7, 3–10. [CrossRef]
13. Xu, Y.; Qi, J.; Borovica-Gajic, R.; Kulik, L. Geoprune: Efficiently matching trips in ride-sharing through geometric properties.

In Proceedings of the 32nd International Conference on Scientific and Statistical Database Management, Vienna, Austria,
7–9 July 2020; pp. 1–12.

14. Pelzer, D.; Xiao, J.; Zehe, D.; Lees, M.H.; Knoll, A.C.; Aydt, H. A partition-based match making algorithm for dynamic ridesharing.
IEEE Trans. Intell. Transp. Syst. 2015, 16, 2587–2598. [CrossRef]

15. Alonso-Mora, J.; Samaranayake, S.; Wallar, A.; Frazzoli, E.; Rus, D. On-demand high-capacity ride-sharing via dynamic
trip-vehicle assignment. Proc. Natl. Acad. Sci. USA 2017, 114, 462–467. [CrossRef] [PubMed]

16. Najmi, A.; Rey, D.; Rashidi, T.H. Novel dynamic formulations for real-time ride-sharing systems. Transp. Res. Part E Logist.
Transp. Rev. 2017, 108, 122–140. [CrossRef]

17. Ketabi, R.; Alipour, B.; Helmy, A. Playing with matches: Vehicular mobility through analysis of trip similarity and matching. In
Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle,
WA, USA, 6–9 November 2018; pp. 544–547.

18. Ta, N.; Li, G.; Zhao, T.; Feng, J.; Ma, H.; Gong, Z. An efficient ride-sharing framework for maximizing shared route. IEEE Trans.
Knowl. Data Eng. 2017, 30, 219–233. [CrossRef]

19. Li, Y.; Chung, S.H. Ride-sharing under travel time uncertainty: Robust optimization and clustering approaches. Comput. Ind.
Eng. 2020, 149, 106601. [CrossRef]

20. Kleiner, A.; Nebel, B.; Ziparo, V. A mechanism for dynamic ride sharing based on parallel auctions. In Proceedings of the 22th
International Joint Conference on Artificial Intelligence (IJCAI), Barcelona, Spain, 16–22 July 2011.

21. Nourinejad, M.; Roorda, M.J. Agent based model for dynamic ridesharing. Transp. Res. Part C Emerg. Technol. 2016, 64, 117–132.
[CrossRef]

22. Aissat, K.; Oulamara, A. Dynamic ridesharing with intermediate locations. In Proceedings of the 2014 IEEE Symposium on
Computational Intelligence in Vehicles and Transportation Systems (CIVTS), Orlando, FL, USA, 9–12 December 2014; pp. 36–42.

23. Fiedler, D.; Čertickỳ, M.; Alonso-Mora, J.; Pěchouček, M.; Čáp, M. Large-scale online ridesharing: The effect of assignment
optimality on system performance. J. Intell. Transp. Syst. 2022, 28, 189–210. [CrossRef]

24. Fielbaum, A.; Bai, X.; Alonso-Mora, J. On-demand ridesharing with optimized pick-up and drop-off walking locations. Transp.
Res. Part C Emerg. Technol. 2021, 126, 103061. [CrossRef]

25. Wang, J.; Cheng, P.; Zheng, L.; Chen, L.; Zhang, W. Online Ridesharing with Meeting Points. Proc. VLDB Endow. 2022,
15, 3963–3975. [CrossRef]

26. Lu, W.; Quadrifoglio, L.; Lee, D.; Zeng, X. The ridesharing problem without predetermined drivers and riders: Formulation and
heuristic. Transp. Lett. 2023, 15, 969–979. [CrossRef]

27. Furuhata, M.; Dessouky, M.; Ordóñez, F.; Brunet, M.E.; Wang, X.; Koenig, S. Ridesharing: The state-of-the-art and future
directions. Transp. Res. Part B Methodol. 2013, 57, 28–46. [CrossRef]

28. Jabbari, P.; MacKenzie, D. Ride sharing attitudes before and during the COVID-19 pandemic in the United States. Transp. Find.
2020, 26. [CrossRef]

29. Shokouhyar, S.; Shokoohyar, S.; Sobhani, A.; Gorizi, A.J. Shared mobility in post-COVID era: New challenges and opportunities.
Sustain. Cities Soc. 2021, 67, 102714. [CrossRef] [PubMed]

30. Hansen, T.; Sener, I.N. Strangers On This Road We Are On: A Literature Review of Pooling in On-Demand Mobility Services.
Transp. Res. Rec. 2023, 2677, 1368–1381. [CrossRef]

31. Uber Technologies, Inc. UberX Share. Available online: https://www.uber.com/gb/en/ride/uberx-share/ (accessed on
17 March 2024).

32. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
33. Ma, S.; Zheng, Y.; Wolfson, O. T-share: A large-scale dynamic taxi ridesharing service. In Proceedings of the 2013 IEEE 29th

International Conference on Data Engineering (ICDE), Brisbane, QLD, Australia, 8–12 April 2013; pp. 410–421.
34. Thangaraj, R.S.; Mukherjee, K.; Raravi, G.; Metrewar, A.; Annamaneni, N.; Chattopadhyay, K. Xhare-a-ride: A search optimized

dynamic ride sharing system with approximation guarantee. In Proceedings of the 2017 IEEE 33rd International Conference on
Data Engineering (ICDE), San Diego, CA, USA, 19–22 April 2017; pp. 1117–1128.

35. Santi, P.; Resta, G.; Szell, M.; Sobolevsky, S.; Strogatz, S.H.; Ratti, C. Quantifying the benefits of vehicle pooling with shareability
networks. Proc. Natl. Acad. Sci. USA 2014, 111, 13290–13294. [CrossRef] [PubMed]

36. Donovan, B.; Work, D. New York City Taxi Trip Data (2010–2013); Technical Report; University of Illinois Urbana-Champaign:
Champaign, IL, USA, 2014.

http://dx.doi.org/10.1016/j.trb.2017.10.006
http://dx.doi.org/10.1287/trsc.2018.0832
http://dx.doi.org/10.1016/j.ejor.2012.05.028
http://dx.doi.org/10.1016/j.trc.2020.02.008
http://dx.doi.org/10.1145/2876480.2876483
http://dx.doi.org/10.1109/TITS.2015.2413453
http://dx.doi.org/10.1073/pnas.1611675114
http://www.ncbi.nlm.nih.gov/pubmed/28049820
http://dx.doi.org/10.1016/j.tre.2017.10.009
http://dx.doi.org/10.1109/TKDE.2017.2760880
http://dx.doi.org/10.1016/j.cie.2020.106601
http://dx.doi.org/10.1016/j.trc.2015.07.016
http://dx.doi.org/10.1080/15472450.2022.2121651
http://dx.doi.org/10.1016/j.trc.2021.103061
http://dx.doi.org/10.14778/3565838.3565849
http://dx.doi.org/10.1080/19427867.2022.2116674
http://dx.doi.org/10.1016/j.trb.2013.08.012
http://dx.doi.org/10.32866/001c.17991
http://dx.doi.org/10.1016/j.scs.2021.102714
http://www.ncbi.nlm.nih.gov/pubmed/36569573
http://dx.doi.org/10.1177/03611981221123801
https://www.uber.com/gb/en/ride/uberx-share/
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1073/pnas.1403657111
http://www.ncbi.nlm.nih.gov/pubmed/25197046

Information 2024, 15, 174 17 of 17

37. Qin, Z.T.; Zhu, H.; Ye, J. Reinforcement learning for ridesharing: An extended survey. Transp. Res. Part C Emerg. Technol. 2022,
144, 103852. [CrossRef]

38. Mahéo, A.; Zhao, S.; Hassan, A.; Harabor, D.D.; Stuckey, P.J.; Wallace, M. Customised Shortest Paths Using a Distributed
Reverse Oracle. In Proceedings of the International Symposium on Combinatorial Search, Gugangzhou, China, 26–30 July 2021;
Volume 12, pp. 79–87.

39. Agatz, N.; Erera, A.L.; Savelsbergh, M.W.; Wang, X. Dynamic ride-sharing: A simulation study in metro Atlanta. Procedia-Soc.
Behav. Sci. 2011, 17, 532–550. [CrossRef]

40. Michail, D.; Kinable, J.; Naveh, B.; Sichi, J.V. JGraphT–A Java Library for Graph Data Structures and Algorithms. ACM Trans.
Math. Softw. 2020, 46, 1–29. [CrossRef]

41. Nethercote, N.; Stuckey, P.J.; Becket, R.; Brand, S.; Duck, G.J.; Tack, G. MiniZinc: Towards a standard CP modelling language.
In Proceedings of the International Conference on Principles and Practice of Constraint Programming, Providence, RI, USA,
23–27 September 2007; pp. 529–543.

42. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual; Gurobi Optimization, LLC: Beaverton, OR, USA, 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.trc.2022.103852
http://dx.doi.org/10.1016/j.sbspro.2011.04.530
http://dx.doi.org/10.1145/3381449

	Introduction
	Definitions
	Previous Work
	Methodology
	Overview
	Parameters and Variables
	Reachability Graphs
	Construction of the Match Graph
	Optimality
	Dynamic Optimisation and Rematching
	Eager and Lazy Optimisation
	Dynamically Changing Edge Costs

	Experiments
	Case Study
	One-to-One Ridematching with Fixed Roles
	One-to-One Ride-Matching with Flexible Roles
	Ridematching with Vehicles Provided (FreeMatch)
	Comparison with Static Formulation
	Impact of Shortest Path Calculations on the Matching Algorithm's Performance

	Conclusions
	References

