
Regarding Jump Point Search and Subgoal Graphs

Daniel D. Harabor1 , Tansel Uras2 , Peter J. Stuckey1 and Sven Koenig2

1Faculty of Information Technology, Monash University, Melbourne, Australia
2Computer Science Department, University of Southern California, Los Angeles, USA

{daniel.harabor, peter.stuckey}@monash.edu, {turas, skoenig}@usc.edu

Abstract
In this paper, we define Jump Point Graphs (JP), a
preprocessing-based path-planning technique simi-
lar to Subgoal Graphs (SG). JP allows for the first
time the combination of Jump Point Search style
pruning in the context of abstraction-based speedup
techniques, such as Contraction Hierarchies. We
compare JP with SG and its variants and report new
state-of-the-art results for grid-based pathfinding.

1 Introduction
Subgoal Graphs (SG) [Uras et al., 2013] and Jump Point
Search (JPS) [Harabor and Grastien, 2011] are two popu-
lar and successful symmetry-breaking algorithms for optimal
pathfinding on grid maps. Similar in spirit, these methods
proceed quite differently in practice, and the relationship be-
tween them, in terms of strengths and weaknesses, has not
been well understood. We address this gap in the literature
with a new graph-theoretic description of JPS and a direct
comparative analysis with SGs.

Our first result shows that JPS, like SG, connects pairs of
vertices to one another using a direct reachability relation.
Moreover, when pairs of vertices are not direct reachable,
JPS guarantees that the path is covered by a distinguished
set of vertices, namely, the set of all jump points. One disad-
vantage of JPS, compared to SG, is its dependence on grid-
scanning and target-detection operations. JPS performs these
operations repeatedly during vertex expansions, and their ne-
cessity complicates the integration of JPS with in-principle
orthogonal speedup techniques.

Our second result is to overcome these limitations by
extracting a graph of all jump points. The new algo-
rithm — Jump Point Graphs (JP) — has the same strong
symmetry-breaking properties as Jump Point Search but only
refers to the input grid while inserting the start and target.

Our third result is an empirical evaluation that shows JP can
be fruitfully combined with a variety of orthogonal speedup
techniques, including bi-directional search and Contraction
Hierarchies [Geisberger et al., 2008]. We also compare JP and
a number of variants against leading methods from the liter-
ature, including SG. We find that JP can significantly reduce
the average number of vertex expansions and also average
runtime on some popular grid benchmarks.

2 Preliminaries and Notation
We consider shortest path search on an 8-neighbour grid
graph G = (V,E) constructed from a grid map M. Each
cell n ∈ M is marked as blocked or unblocked. There are 8
available move actions ~v (equiv. directions), which serve to
transition the search from one cell to the next. Straight moves
cost 1 and diagonal moves

√
2. A move ~v from a cell n to n′

is unblocked (that is, (n, n′) ∈ E) iff n and n′ are adjacent
unblocked cells and, if ~v is diagonal, then there is no blocked
cell adjacent to both n and n′ (no-corner-cutting constraint).

We say that a diagonal direction ~d results from combining
two cardinal directions; i.e. ~d = ~c1+ ~c2. Directions ~v1 and ~v2
are perpendicular, written ~v1 ⊥ ~v2, when the angle between
them is a right angle. We also use the algebra n′ = n+ k1 ×
~v1 + k2 × ~v2, with k1 and k2 as integers, to say that cell n′
is reached from cell n with k1 moves in direction ~v1 followed
by k2 moves in direction ~v2. We sometimes refer to cardinal
directions by name: U(p), D(own), L(eft), and R(ight).

A path π = 〈n1 = s, . . . , nk = t〉 is an ordered sequence
of cells from a distinguished cell called the start = s to a
distinguished cell called the target = t such that there exists a
valid move to connect every pair of adjacent cells on the path.
When discussing paths, we sometimes refer to their valid con-
tinuations. A continuation is a move ~v whose application ex-
tends the path by one or more cells. For example, π + k × ~v
extends path π with k moves in direction ~v.

We refer to the (8-neighbor) grid graph constructed from
M by assuming that all cells are unblocked as freespace. We
refer to a shortest path π in freespace as a freespace-shortest
path, and say that π is unblocked (on G) iff it is also a path
on G. We use a heuristic function h to measure distances in
freespace, also referred to as the Octile distance heuristic.

3 Subgoal Graphs
Subgoal Graphs [Uras et al., 2013; Uras and Koenig, 2017]
(SGs) is the name of an abstraction-based algorithm devel-
oped for fast and optimal pathfinding in directed weighted
graphs. During an offline preprocessing step, a distinguished
set of vertices, known as subgoals, are identified. Each sub-
goal appears as a vertex in an eponymous SG, and each edge
in an SG corresponds to a shortest graph path. However,
edges are only added to the SG between pairs of subgoals
that satisfy a given reachability relation.



We now adapt definitions from [Uras and Koenig, 2017]:
Definition 1. A reachability relation on G = (V,E) is a re-
lation R ⊆ V × V that satisfies:

1. ∀s ∈ V, (s, s) ∈ R
2. ∀(s, t) ∈ E, (s, t) ∈ R (edge property)

Definition 2. S ⊆ V is anR-shortest-path-cover (R-SPC) on
G iff, for all s, t ∈ V , if (s, t) 6∈ R, then at least one shortest
s-t path on G passes through some v ∈ S.
Definition 3. t is Direct-R-reachable (DR) from s (with re-
spect to S) on G iff (s, t) ∈ R and no shortest s-t path on G
passes through any v ∈ S.
Definition 4. GS = (S,ES) is a subgoal graph on G with
respect to R iff S is an R-SPC on G and, ∀u 6= v ∈ V ,
(u, v) ∈ ES iff v is direct-R-reachable from u (with respect
to S) on G.
These definitions are adapted from [Uras et al., 2013]:
Definition 5. An unblocked cell s is a convex corner (of a
blocked cell) iff there are two perpendicular cardinal direc-
tions ~c1 and ~c2 such that s+~c1+~c2 is blocked and s+~c1 and
s+ ~c2 are not blocked.
Definition 6. Two cells s and t are freespace-reachable [FR]
iff at least one freespace-shortest path between them is un-
blocked on G. Two cells s and t are safe-freespace-reachable
[SFR] iff all freespace-shortest paths between them are un-
blocked on G.

SGs are instantiated on grid graphs using SFR as the reach-
ability relation and by selecting S as the set of convex corners
of blocked cells. Searching for shortest paths with a SG is a
simple three step process sometimes referred to as Connect-
Search-Refine:

1. Connect: The algorithm temporarily inserts s and t into
the SG (assuming they do not already appear) and con-
nects each of them to all DR subgoals and possibly to
one another, in case that s and t are themselves DR.

2. Search: The algorithm executes a best-first search in the
query SG from s to t. Figure 3 shows an example.

3. Refine: Having found a subgoal path such as π = 〈v0 =
s, . . . , vk = t〉 the algorithm finds paths between each
pair of adjacent subgoals vi and vi+1 on G.

In [Uras and Koenig, 2017], it is shown that the Connect-
Search-Refine process using SGs always finds shortest paths
between any two vertices. Meanwhile, in [Uras et al., 2013],
it is (implicitly) shown that the set of convex corners is an
SFR-SPC on G. Using SFR as the reachability relation has a
number of benefits:

• Refinement is trivial: For any (s, t) ∈ SFR, by definition,
any freespace-shortest path is also a path on G.

• Edge costs are not stored (they’re equal to Octile dis-
tance).

• The set of all Direct SFR (DSFR) subgoals for any cell
can be identified fast using pre-computed distance-to-
obstacle data (equiv. clearance values). This data also
helps to speed up the Connection phase of the algorithm.

A

B

(a)

7 8

2 3

5

6

1

4

(b)

7 8

2 3

5

6

1

4

(c)

Figure 1: (a) Three equivalent paths connect A and B. JPS breaks
such symmetries by taking the bold path, where diagonal moves ap-
pear first. (b) This diagonal jump point has three diagonal-first con-
tinuations: 2, 3 and 5. (c) This straight jump point also has three
diagonal-first continuations: 1, 2, 4. Grey cells are pruned.

4 Jump Point Search
In uniform-cost grids many symmetric paths can connect the
same pair of vertices. Figure 1(a) shows an example.
Definition 7. [Harabor and Grastien, 2011] Two grid paths
are symmetric iff: (i) they share the same start and target and;
(ii) they have the same cost and; (iii) their constituent moves
can be re-ordered to derive one path from the other.

In the presence of symmetry, otherwise efficient search al-
gorithms, such as A*, waste time, exploring many equiva-
lent partial paths and making slow progress to the target. The
Jump Point Search (JPS) family of algorithms break sym-
metries by maintaining the following invariant during search:
when a node n is added or updated on the A* open list, the
path to that node is diagonal-first. This property means that
the only successors generated when n is expanded are those
which allow the current path to continue from n in a way that
is taut and which guarantees that diagonal moves appear as
early as possible. All other successors can be safely pruned.
Definition 8. A path π = 〈s, . . . , t〉 is taut iff every subpath
of length two 〈ni−1, ni, ni+1〉 ∈ π is also a shortest path.
Definition 9. [Harabor and Grastien, 2011] A path π is
diagonal-first iff it contains no straight-to-diagonal turn-
ing point 〈nk−1, nk, nk+1〉 which could be replaced by a
diagonal-to-straight turning point 〈nk−1, n′k, nk+1〉 to pro-
duce a new valid path on G.

The diagonal-first invariant reduces the branching factor of
each expanded node, often to just 0 or 1. Rather than adding
such nodes to the open list, JPS immediately processes them
as part of a recursive and eponymous jumping procedure.
Jumping allows the search to generate and expand only a
distinguished set of nodes at which diagonal-first paths can
branch. These nodes are called jump points, of which there
exist two different types:
Definition 10. A straight jump point is a tuple (n,~c) where n
is a cell and ~c is a cardinal travel direction such that, for some
~c′ ⊥ ~c: (i) n − ~c is unblocked; (ii) n + ~c′ is unblocked; and
(iii) (n− ~c) + ~c′ is blocked.

Definition 11. A diagonal jump point is a tuple (n, ~d) where
n is a cell and ~d = ~c1 + ~c2 is a diagonal direction such that,
for some k: (i) n+k× ~c1 is an unblocked path from n to a cell
n′ such that (n′, ~c1) is a straight jump point or; (ii) n+k× ~c2



2 3 41 5 6 7 8 9

1

2

3

4

5

6

S

T

Figure 2: JPS searches from S to T. Diagonal jump points are filled
(blue) while straight jump points are not. Dashed lines indicate re-
cursive scans. When expanding S only one successor is generated:
((2, 1), R). From here JPS recurses in three directions: R and D,
which produce no successors, and R+D which produces ((4, 3),
R+D). The search continues in this way until ((9, 6), R), where JPS
recurses in direction U and generates the target.

is an unblocked path from n to a cell n′ such that (n′, ~c2) is
a straight jump point; or (iii) n + k × ~c1 or n + k × ~c2 is an
unblocked path from n to the target.

Target Detection: JPS treats the target as a special case.
While scanning the grid and jumping from one node to the
next, JPS detects the target and generates it as a successor.

Figures 1(b) and 1(c) show different jump points and their
taut diagonal-first continuations. Figure 2 shows a complete
JPS example: only diagonal-first paths are explored and every
turning point is a jump point. Together with target detection,
these features are sufficient to find a shortest path, from any
start to any target, if a path exists at all.

Lemma 1. For every shortest path π on G, there exists an
equivalent path π′ on G which is diagonal-first.

Some advantages of JPS compared to SG: (i) it runs entirely
online; (ii) it requires no preprocessing or insertion; and (iii) it
prunes successors more aggressively and often finds the target
faster [Harabor and Grastien, 2014]. Some disadvantages:

• The jumping rules are not easily reversed, which means
JPS is implemented only as a uni-directional search;

• JPS constantly refers to the input grid to break symme-
tries and detect the target. These features make JPS dif-
ficult to integrate with speedup techniques such as Con-
traction Hierarchies [Geisberger et al., 2008].

To overcome these limitations, we are going to develop a new
and graph-theoretic perspective of JPS. In the process, we
also show that JPS and SG are closely related.

5 Jump Point Graphs
To begin, we formalise the search space of JPS as a graphG∗.

Definition 12. Let G = (V,E) be a grid graph. Its corre-
sponding direction-extended grid graph G∗ = (V ∗, E∗) is
defined as:

• For each vertex n ∈ V and each possible grid move ~v,
there exists a vertex (n,~v) ∈ V ∗.

• For each (n1, n2) ∈ E and each pair of grid moves ~v1
and ~v2, there exists ((n1, ~v1), (n2, ~v2)) ∈ E∗ iff:

1. n1 + ~v2 = n2
2. 〈n1 − ~v1, n1, n2〉 is diagonal-first and taut.

G∗ is analogous to G but each cell appears 8 times: once for
each direction. Intuitively, G∗ labels each vertex n of G with
each possible incoming direction ~v, and limits the outgoing
directions ~v′ from (n,~v) to be diagonal-first and taut with ~v.

Lemma 2. Any path π∗ on G∗ is diagonal-first and taut.

Proof. G∗’s edges are defined such that (1) for each vertex
(n,~v) ∈ V ∗, (n,~v) is reachable only with move ~v, and (2)
each move corresponding to an outgoing edge of (n,~v) is
diagonal-first and taut with v. Thus, for any path π∗ on G∗,
any two consecutive moves are diagonal-first and taut.

Lemma 3. Let π = 〈n0, . . . , nk〉 be a diagonal-first and
taut path on G. Then, there exists ~v0, . . . , ~vk such that π∗ =
〈(n0, ~v0), . . . , (nk, ~vk)〉 is a path on G∗.

Proof. The proof follows from Definition 12 by selecting, for
i = 1, . . . , k, ~vi as the direction that satisfies ni−1 + ~vi = ni,
and selecting ~v0 = ~v1.

Recall that, for any s, t ∈ V , there exists a diagonal-first
shortest s-t path on G (Lemma 1) which, by Lemma 3, is
preserved on G∗. Therefore, we can use G∗ for finding short-
est s-t paths on G, by treating all (s,~v) as start vertices and
treating all (t,~v) as target vertices, for all directions ~v.

By definition, G∗ contains any (straight or diagonal) jump
point on G. We now show that the set of straight jump points
is a freespace-reachability-SPC on G∗, by extending the defi-
nitions of freespace-shortest paths and freespace-reachability
(Definition 6) to G∗. We use the prefix diagonal-first to dis-
tinguish these definitions onG∗ from their counterparts onG,
and to better characterise their properties.

Definition 13. The diagonal-first freespace-shortest path
from a cell n to n′ is a freespace-shortest path where
all diagonal moves appear before cardinal ones. A vertex
(n′, ~v′) ∈ V ∗ is diagonal-first freespace reachable [DFFR]
from (n,~v) ∈ V ∗ iff a path from (n,~v) to (n′, ~v′) on G∗ cor-
responds to the diagonal-first freespace-shortest path from n
to n′. We use DDFFR to denote Direct-DFFR-Reachable.

Theorem 1. Straight jump points form a DFFR-SPC on G∗.

Proof. Let s∗ = (s,~v), t∗ = (t, ~v) ∈ V ∗, such that an s∗-t∗
path exists on G∗. We show that, if (s∗, t∗) 6∈ DFFR, then
a shortest s∗-t∗ path on G∗ passes through a straight jump
point. For contradiction, assume that (s∗, t∗) 6∈ DFFR, and
that no shortest s∗-t∗ path on G∗ passes through a straight
jump point. Let π∗ be any shortest s∗-t∗ path on G∗. By
our assumption, π∗ does not pass through a straight jump
point. By Lemma 2, π∗ is diagonal-first and taut. π∗ can-
not have a cardinal-to-cardinal turn because, otherwise, it is
either non-taut or it passes through a jump point. π∗ can-
not have a diagonal-to-diagonal turn because, otherwise, it
is non-taut. π∗ cannot have a cardinal-to-diagonal turn be-
cause, otherwise, it is either non-diagonal-first or it passes



2 3 41 5 6 7 8 9

1

2

3

4

T

S

Figure 3: The nodes S and T are direct reachable with DDFFR but a
search with DSFR expands every corner point along the way. Dashed
lines are temporary (i.e., inserted) vertices and edges.

through a jump point. Therefore π∗ can only have diagonal-
to-cardinal turns. There is only one such possible π∗, which
corresponds to the diagonal-first freespace-shortest s-t path
π. But then, the diagonal-first freespace-shortest s-t path is
unblocked, contradicting that (s∗, t∗) 6∈ DFFR.

We may formalise the relation between SG and JPS as so:

Theorem 2. Subgoal reachability is a more restrictive notion
than jump point reachability. Formally, DSFR⊆ di(DDFFR),
where di(R) is the relation defined as (s, t) ∈ di(R) iff
∃~v1, ~v2. ((s, ~v1), (t, ~v2)) ∈ R.

Proof. Consider (s, t) ∈ DSFR. By definition, the diagonal-
first freespace-shortest s-t path π is unblocked and does not
pass through a subgoal. For some s∗ = (s,~v1) and t∗ =
(t, ~v2), let π∗ be an s∗-t∗ path onG∗ that corresponds to π. By
Lemma 3, such ~v1, ~v2, and π∗ exists since π is diagonal-first
and taut (freespace-shortest). Since π does not pass through
corner points, π∗ does not pass through straight jump points.
Therefore, (s, t) ∈ di(DDFFR).

Theorem 2 suggests that searching over jump points may re-
quire fewer expansions per instance than searching over an
equivalent SG. Consider that JPS travels from one vertex to
the next, stopping only at corner vertices where shortest paths
can bend. By comparison, SG search will stop at every corner
vertex along the way. Figure 3 shows an example.

Next, consider the subgoal graph G∗J = (J,EJ) con-
structed on G∗ using the set of straight jump points J as
subgoals. From the theory presented in [Uras and Koenig,
2017] and the result of Theorem 1, G∗J can be used to find
shortest paths as long as the following conditions hold:
(1) (Preprocessing) We add edges between every pair of
straight jump points that are DDFFR from one another.
(2) We connect the start s: to every straight jump point that is
DDFFR from (s,~v), for any direction of ~v.
(3) We connect the target t: from every straight jump point
for which (t, ~v) is DDFFR, for any direction of ~v.
(4) We connect the start to the target: iff, for some directions
~v, and ~v′, (t, ~v′) is DDFFR from (s,~v).

We call the resulting method the Jump Point Graph (JP).
Since JP can be considered a Subgoal Graph on G*, we dis-
cuss in the following sections: how to efficiently identify its
edges, how to quickly perform the Connection step and how
to combine JP with other orthogonal speed-up techniques, in-
cluding bi-directional search and Contraction Hierarchies.

Algorithm 1: SG connect and JP forward connect.
We adjust line 3 as appropriate and execute or ignore
Lines 9-11 as appropriate.

1 function CardinalScan(s, ~c, &D)
2 if C[s,~c] > 0 then
3 add to D: s+ ~c×C[s,~c] or (s+ ~c×C[s,~c],~c);
4 function DiagonalFirstScan(s, ~d, &D)
5 assign ~c1, ~c2 such that ~c1 + ~c2 = ~d;
6 n← s;
7 while C[n, ~d] > 0 do
8 n← n+ ~d×C[n, ~d];
9 if n is a subgoal then

10 add n to D;
11 return;
12 CardinalScan(n, ~c1, D);
13 CardinalScan(n, ~c2, D);
14 function ForwardConnect(s)
15 D ← ∅;
16 foreach cardinal grid direction ~c do
17 CardinalScan(s, ~c, D);
18 foreach diagonal grid direction ~d do
19 DiagonalFirstScan(s, ~d, D);
20 return D;

6 Connection Using Clearances
Using precomputed clearances (distances to important cells
in a certain direction) is an optimisation technique used by
both SGs [Uras et al., 2013] and JPS [Harabor and Grastien,
2012; 2014] to improve query times. For SG, clearances help
to speed-up the process of identifying a set of DSFR subgoals
from any given cell, and they are used when constructing the
graph and when connecting the start and target to it. For JPS,
clearances are used for quickly scanning the grid to gener-
ate jump-point successors. In this section, we show that both
algorithms use clearances in a very similar way (the similari-
ties and differences are shown in Algorithm 1). We also show
that SGs can be constructed, using clearances, in an amount
of time (and using an amount of space) that is linear with re-
spect to the of the size of the input grid.

Algorithm 1 can be considered as a systematic scan of
all diagonal-first freespace trajectories that originate from a
given source cell s: ~c cardinal scans (lines 1-3) scan those tra-
jectories where the first move is ~c, by repeatedly moving in
direction ~c. The ~d = ~c1 + ~c2 diagonal-first scans (lines 4-13)
scan those trajectories where the first move is diagonal, by re-
peatedly moving in direction ~d and branching off into ~c1 and
~c2 cardinal scans at every visited cell. It uses precomputed
clearance values in both cardinal and diagonal directions to
speed-up the scans. A ~c cardinal clearance C[n,~c] from a cell
n is the number of ~c cardinal moves that can be made from
n to reach an important cell m (subgoals for SG connection,
jump points with direction ~c for JP connection). If such m
does not exist, C[n,~c] is 0. Using cardinal clearances reduces
cardinal scans to a simple table look-up (line 3) that requires
O(1) time, and the scanning algorithm reduces to a sequence
of clearance look-ups along the diagonals that extend from s.



A	 B	 C	 D	 E	 F	 G	 H	

1	

2	

3	

4	

5	

I	 J	 J	 L	 M	 N	 O	 P	

s	6	

7	

8	

9	

Figure 4: SG and JP connecting the start node s. Empty (blue) discs
indicate cells that are DSFR from the source node S, while solid
(red) discs indicate straight jump points DDFFR from S. Dashed
(blue) lines indicate clearance look-ups by SG while red (solid) lines
indicate clearance look-ups by JP. Squares (black) indicate convex
corners that are not DSFR or not DDSFR from S. These do not ap-
pear in the set of successors for S with SG or with JP.

A ~d diagonal clearance C[n, ~d] from a cell n is the number
of ~d diagonal moves that can be made from n to reach a cell
m where C[m, ~c1] > 0 or C[m, ~c2] > 0 (that is, the row or
column of m contains an important cell). C[n, ~d] = 0 if such
m does not exist. Diagonal clearances allow one to quickly
traverse the diagonal by skipping the rows and columns that
do not contain important cells.

The main difference between SG connect and JP forward
connect is when they terminate their scans. Namely, a ~c cardi-
nal or ~d diagonal-first scan of SG connect stops immediately
when it finds a subgoal (as any continuation of the scan can
only find subgoals that are not DSFR), whereas a ~c cardinal
scan of JP stops when it finds a jump point with direction ~c.
(The ~d diagonal-first scan can only stop when it finds a jump
point with direction ~d, but such jump points are not straight-
jump points and are therefore not included in JP). This dif-
ference can be observed in the example in Figure 4, and is
reflected in lines 9-11 of Algorithm 1 (and partially obscured
since it is encoded in the cardinal, and, implicitly, diagonal
clearances). Another difference, which is omitted from Al-
gorithm 1, is a small optimisation that allows SG connect to
prune any non-DSFR subgoals from the scan , which allows
constructing the edges of SG exactly (an example is location
M4 in Figure 4). This difference is not relevant to our discus-
sion, and we refer the interested reader to [Uras et al., 2013]
for further details.

Theorem 3. Using cardinal clearances, an explicit SG can be
constructed on a W × H grid in time O(WH), and therefore
its number of edges is O(WH).

Proof. The set of subgoals can be identified in time O(WH)
since it suffices to check the eight surrounding cells to deter-
mine whether a cell is a convex corner. Cardinal clearances
can be computed in time O(WH) by scanning the grid row by
row or column by column while maintaining the clearance to
the last encountered convex corner. The edges of a SG can be

identified in O(WH) time, by running Algorithm 1 from every
subgoal, as we discuss below.

Suppose that we perform a ~c cardinal scan from every sub-
goal. Since each cardinal scan requires O(1) time to look-up a
clearance value, and since there are O(WH) subgoals, the to-
tal time required for all ~c cardinal scans is O(WH). Suppose
that we perform a diagonal-first ~d = ~c1 + ~c2 scan from every
subgoal. Each scan moves ~d diagonally from its source s and,
for each visited cell, performs in O(1) time a ~c1 and ~c2 cardi-
nal clearance look-up The ~d diagonal that extends from each
subgoal stops when another subgoal is found. Therefore, any
grid cell is visited at most once by moving ~d diagonally from
all the subgoals during their ~d diagonal-first scans. Since each
cell is visited at most once, each visited cell requires O(1)
time, and there are O(WH) cells, ~d diagonal-first scans from
every subgoal requires O(WH) time. Since there are a con-
stant number of directions, the total effort for performing all
the scans from every subgoal takes O(WH) time.

This result does not apply to constructing JP, however, as
JP diagonal-first scans do not necessarily terminate at convex
corners and, as a result, some cells can be visited multiple
times by JP ~d diagonal-first scans from different cells. Fig-
ure 4 shows an example: The cells F6 and E5 both contain
a jump point in the Up direction. The Up+Left diagonal-first
scan from (F6, Up) does not stop at E5 since E5 does not have
a jump point (F5, Up+Left).

7 Diagonal Merged Jump Point Graphs
In this section we describe a variant of JP that achieves
O(WH) preprocessing time and contains O(WH) edges, simi-
lar to SG. As hinted in the previous section and in the proof of
Theorem 3, this new variant should terminate its ~d diagonal-
first scans when the scan reaches a convex corner. This can
be achieved by adding additional jump points in diagonal di-
rections at every convex corner. Namely, for any convex cor-
ner n where n − ~c1 and n − ~c2 is unblocked but n − ~d is
blocked (with ~d = ~c1 + ~c2 diagonal), we add the jump points
(n, ~c1 − ~c2) and (n, ~c2 − ~c1). This variant still contains all
the straight jump-points and, therefore, its set of jump points
is a DFFR-SPC. The only differences is that, by adding more
jump points, we allow Algorithm 1 to terminate its scans ear-
lier. We call this variant JPD. For instance, in Figure 4, adding
the diagonal jump point (E5, Up+Left) results in the Up+Left
diagonal-first scan from (F6, Up) to terminate at E5, the first
convex corner that it scans.

At first glance JPD seems to add many nodes to the jump
point graph. However, each new diagonal jump point is equiv-
alent to an existing straight jump point. In Figure 4 we can
see that (E5,Up+Left) has the same successors as (E5,Up).
Hence we merge these two jump points in JPD into a single
jump point without changing the graph connectivity. Since
each new diagonal jump point is merged with an existing
straight jump point, JPD has no more jump points than JP.
Notice however that JPD search may stop at corner points
where JP search would not. We will see this in experiments.



A	 B	 C	 D	 E	 F	 G	 H	

1	

2	

3	

4	

5	

I	 J	 J	 L	 M	 N	 O	 P	

T	6	

7	

8	

9	

Figure 5: To insert the target JP performs cardinal-first scans to iden-
tify all incoming jump points. Unlike start insertion, diagonal recur-
sions of JP (but not JPD) target insertion do not terminate at the first
(incoming) jump point.

Theorem 4. Using cardinal clearances, JPD can be con-
structed using an amount of time and space that is O(WH).

Proof. The proof is similar to that of Theorem 3.

8 Searching with Jump Point Graphs
JPs and JPDs use a similar Connect-Search-Refine procedure
as SGs. We discuss the main steps:

Start Insertion: To begin, we look for jump point succes-
sors of s in each of the 4 cardinal directions. The cost is four
constant-time calls to C, the set of clearance values stored
for every grid cell. We then jump (equiv. recurse) from s in
each of the 4 diagonal directions. At each step we look for
straight jump point successors at a cost of 2 further constant-
time lookups into C. For both JP and JPD, the total complex-
ity is linear in the smaller of the map dimensions H and W .

Target Insertion: This is similar to start insertion but in re-
verse: we identify a set of predecessors which covers every
incoming diagonal-first shortest path, from all other nodes to
t. Computing predecessors fast requires a set of reverse clear-
ance values. A reverse clearance C[(x, y),~v] measures the
distance from a jump point (or a blocked cell, if no jump point
exists) to cell (x, y) in direction −~v. In JP, the complexity of
target insertion with reverse-clearances is worst-case linear in
the size of the grid; i.e., we visit every vertex in the row and
column of the target and we recurse along every intersecting
diagonal. In JPD, complexity is linear in the smaller of the
map dimensions H and W , since we do not recurse when
scanning diagonals. Figure 5 shows JP target insertion. JPD
is similar but does not recurse at D3, D5 and L5.

Direct Reachable Paths: Sometimes the shortest path be-
tween the start and the target may not involve any vertex from
the DFFR-SPC. These cases can be handled similar to SG: by
applying target detection during insertion of the start node.

Search: After insertion, we run an optimal search (e.g. A*
or a bi-directional variant) in the JP or JPD, from the start to
the target. The resulting path π is made up entirely of jump

x
a

b

x

Figure 6: A concave graph illustrating convex corner points.

points. In this representation there is no need for explicit re-
finement: for every pair of adjacent vertices ni, ni+1 ∈ π,
there always exists a diagonal-first sequence of unblocked
cells in the grid, which can be generated without search.

Avoidance Tables: We now discuss how to speed up inser-
tion of the start and target. Notice in Figure 6 that there are 4
convex corner points, and 8 jump points, two at each marked
location. Yet only jump points a and b are interesting: the x
jump points cannot be reached except if we connect to them
during the insertion of the start or target. In graphs with con-
cave components, there can be a large number of these unin-
teresting jump points. To reduce the overhead of start and tar-
get insertion, we introduce an avoidance table for such jump
points. When we insert the start, we mark in the avoidance
table each such jump point that it connects to. When inserting
the target, if we try to connect to a jump point in the avoidance
table which is not marked, we omit the connection (since the
jump point has no predecessors including the start).

9 Experimental Setup
We run experiments on a large set of standard grid-based
pathfinding benchmarks [Sturtevant, 2012] and on the subset
of instances from the 2014 Grid-based Path Planning Compe-
tition (GPPC). Our reference point in this comparison is CH-
G, a fast implementation of Contraction Hierarchies [Geis-
berger et al., 2008] which appears undominated at the com-
petition. This algorithm stores no downward edges and uses
bi-directional Dijkstra search to find a path. It also benefits
from stall-on-demand, a common optimisation. To refine a
path CH-G uses midpointer unpacking.

Our main experiment compares the following algorithms:

• SG, also called Subgoal Simple in [Uras et al., 2013];

• JP and JPD, as described in the current paper;

• CH-SG, CH-JP and CH-JPD, all of which apply CH
on top of each basic method.

Our test machine is a 3.6GHz Intel Core i7-7700 CPU
with 32GB of RAM. Our implementations are based on C++
code from CH-SG [Uras and Koenig, 2018]. From this com-
mon base we derive all algorithms except CH-G. Similar
to [Uras and Koenig, 2018], all searches use the Octile dis-
tance heuristic and a binary heap priority queue. Unlike [Uras
and Koenig, 2018], SG and CH-SG store clearances in all
eight directions per grid cell (cf. only four). JP and CH-JP



store forward and backward clearances, making for a total of
16 values per cell. Each clearance requires 1 byte and values
longer than 255 are extracted in multiple steps.

10 Results
We begin with Table 1 which compares the different meth-
ods on the set of maps and instances from GPPC 2014 that
are drawn from games. Games are one of the principal uses
of grid maps and here we clearly see the impact of Theo-
rem 2: JP has many fewer edges than SG, it expands many
fewer nodes, it has a smaller branching factor and its run-
time performance is faster by several factors. In combination
with Contraction Hierarchies the performance gap is reduced.
Here we make three observations: (i) most of the advantage
that CH-JP has vs. CH-SG comes from having a faster Search
and faster Refine stage. (ii) the Connect stage of both algo-
rithms is comparable; i.e. despite JP target insertion having
worst-case linear time requirements we find that the proce-
dure is fast in practice; (iii) both CH-JP and CH-SG faster
than CH-G, a method that is undominated at the competition.

In Table 2 we include additional benchmarks from Sturte-
vant’s well known repository and we consider the full set of
maps and instances from GPPC 2014. We again observe that
JP and JPD achieve shorter query times than SG. However,
when combined with CH, we observe that CH-SG is faster
than CH-JP and CH-JPD on each of: random, room, and maze
maps with small corridor widths. We think that JP and JPD do
not combine with CH as well as SG for the following reason:
In JP and JPD, multiple jump points may share a cell, but
are treated as different vertices. Moreover, the shortest paths
between some pairs of jump points in JP or JPD might be
longer than the shortest path between the cells that contain
these jump points (for instance, if the start jump point has the
wrong direction to lead the search to the target jump point).
When applying CH to JP or JPD without prior knowledge of
this fact, the CH construction algorithm tries to preserve these
suboptimal paths, which can introduce redundant edges. Our
CH-JP and CH-JPD implementations eliminate most of these
redundant edges during contractions, by performing distance
queries on JP or JPD to check whether new shortcuts are
redundant. We consider other optimisations to improve the
combination of JP or JPD with CH as a future work.

vs. JPS+: JPS+ is a preprocessing-based variant of online
JPS which stores clearance value data to speed up search. Al-
though not a direct competitor here we may compare against
this algorithm based on its performance at GPPC 2014. At
the competition JPS+ is reported to be 21.36x slower than the
same implementation of of CH-G appearing in our experi-
ments [Sturtevant et al., 2015]. In Table 2, row GPPC-all
we see that JP is slower than CH-G by a factor of 7.48. Ob-
serve also that JP is faster than CH-G for all subsets of bench-
marks at GPPC except random. Here JP is two orders slower
than CH-G, which accounts for the overall result.

vs. JPS+BB: JPS+BB [Rabin and Sturtevant, 2016] is a com-
bination of jump point search and bounding boxes. Run-
ning the GPPC benchmarks the authors found JPS+BB to
be 2.42 faster than CH-G and required 16% less storage, but

3.14 longer preprocessing time. In comparison CH-JP is 4.83
times faster than CH-G, uses 49% less storage, and has 51%
shorter preprocessing. Hence CH-JP improves upon JPS+BB.

11 Conclusion
In summary, we introduce JP which is uniformly better than
SG, even on random maps where there end up being many
more jump points than subgoals. We allow the use of con-
traction hierarchies for jump point search for the first time,
improving the state-of-the-art in path planning for the impor-
tant category of game maps.

12 Acknowledgements
Daniel Harabor is funded by the Australian Research Council
grant DE160100007. Research at the University of Southern
California was supported by the National Science Foundation
(NSF) under grant numbers 1724392, 1409987, 1817189 and
1837779. Views and conclusions in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the spon-
soring organisations, agencies or the U.S. government.

References
[Geisberger et al., 2008] Robert Geisberger, Peter Sanders,

Dominik Schultes, and Daniel Delling. Contraction hi-
erarchies: Faster and simpler hierarchical routing in road
networks. In WEA, pages 319–333. Springer, 2008.

[Harabor and Grastien, 2011] Daniel Damir Harabor and Al-
ban Grastien. Online Graph Pruning for Pathfinding On
Grid Maps. In AAAI, pages 1114–1119, 2011.

[Harabor and Grastien, 2012] Daniel Harabor and Alban
Grastien. The JPS Pathfinding System. In SoCS, 2012.

[Harabor and Grastien, 2014] Daniel Harabor and Alban
Grastien. Improving Jump Point Search. In ICAPS, pages
128–135, 2014.

[Rabin and Sturtevant, 2016] Steve Rabin and Nathan
Sturtevant. Combining Bounding Boxes and JPS to Prune
Grid Pathfinding. In AAAI, pages 746–752, 2016.

[Sturtevant et al., 2015] Nathan R Sturtevant, Jason Traish,
James Tulip, Tansel Uras, Sven Koenig, Ben Strasser, Adi
Botea, Daniel Harabor, and Steve Rabin. The Grid-Based
Path Planning Competition: 2014 Entries and Results. In
SoCS, pages 241–251, 2015.

[Sturtevant, 2012] Nathan Sturtevant. Benchmarks for Grid-
Based Pathfinding. Transactions on Computational Intel-
ligence and AI in Games, 4(2):144 – 148, 2012.

[Uras and Koenig, 2017] Tansel Uras and Sven Koenig. Fea-
sibility Study: Subgoal Graphs on State Lattices. In SoCS,
pages 100–108, 2017.

[Uras and Koenig, 2018] Tansel Uras and Sven Koenig. Un-
derstanding Subgoal Graphs by Augmenting Contraction
Hierarchies. In IJCAI, pages 1506–1513, 2018.

[Uras et al., 2013] Tansel Uras, Sven Koenig, and Carlos
Hernández. Subgoal Graphs for Optimal Pathfinding in
Eight-Neighbor Grids. In ICAPS, pages 224–232, 2013.



Prep. Memory Successors Time (µs)
time (s) (MB) |V | |E| Expanded per exp. Connect Search Refine Total

A* - 2.81 48250 367992 21840.03 7.61 - 4085.79 - 4085.79
CH-G 37.12 4.43 48250 387136 139.15 7.73 - 55.45 23.31 78.76
SG 0.01 1.68 1364 20196 703.34 14.41 5.37 119.02 2.64 127.03
JP 0.02 3.24 2764 8799 186.16 1.78 5.40 22.46 1.64 29.50
JPD 0.02 3.23 2753 7021 230.12 1.44 4.82 24.55 1.93 31.30
CH-SG 11.94 1.78 1364 11426 59.12 9.01 4.99 13.12 4.85 22.96
CH-JP 0.57 3.35 2764 9742 34.72 2.13 5.34 5.42 3.33 14.09
CH-JPD 0.23 3.33 2753 8367 36.98 1.93 4.80 5.54 3.81 14.14

Table 1: Comparison on the subset of GPPC 2014 maps and instances which are drawn from computer games. There are 27 maps from
DAO, 67 maps from DA2 and 11 from StarCraft. We give average graph size for each algorithm (A* runs on input grid maps) and we report
performance metrics for nodes (average expansions, average successors per expansion) and runtime (total as well as for each of Connect-
Search-Refine). Columns Prep and Memory indicate overheads.

Edges relative to G (%) Speed up over A* on G
CH- CH- CH- CH- CH- CH-

CH-G SG JP JPD SG JP JPD CH-G SG JP JPD SG JP JPD
bg 89.2 13.4 5.8 4.1 8.1 6.6 5.8 21.2 10.1 41.9 34.2 34.7 49.9 49.6
bg-512 111.4 1.4 0.4 0.4 0.8 0.5 0.5 17.6 59.1 220.5 207.6 161.4 246.3 246.8
dao 98.6 6.3 3.2 2.5 3.8 3.9 3.4 40.9 24.6 80.3 77.1 121.4 159.2 161.8
da2 93.1 4.8 2.1 1.9 2.8 2.4 2.3 30.0 25.3 92.6 83.2 74.1 105.6 104.5
sc 110.9 5.1 2.4 1.9 2.8 2.6 2.1 60.4 41.5 210.1 199.0 289.6 498.4 506.8
wc3-512 108.7 1.6 0.9 0.7 0.9 1.0 0.9 13.5 82.2 212.7 212.5 190.4 230.1 237.4
maze-1 85.8 27.6 38.4 38.4 23.5 60.4 60.4 91.1 4.0 4.1 4.2 159.6 129.8 128.7
maze-2 62.1 6.6 5.9 5.9 5.0 8.7 8.7 164.1 11.4 16.4 16.4 376.6 351.8 354.8
maze-4 65.6 1.8 1.4 1.4 1.2 1.8 1.9 222.6 43.6 102.7 91.2 772.3 864.6 826.4
maze-8 80.5 0.4 0.4 0.3 0.3 0.4 0.5 225.6 172.6 395.5 359.0 1279.4 1416.4 1363.5
maze-16 93.3 0.1 0.1 0.1 0.1 0.1 0.1 211.0 598.5 1218.7 1127.0 1917.8 2114.0 2030.6
maze-32 101.7 0.0 0.0 0.0 0.0 0.0 0.0 158.6 1705.3 2656.6 2531.7 2527.8 2687.2 2646.4
random-10 104.7 30.2 47.6 34.1 42.6 178.5 135.4 9.2 3.1 3.4 3.6 35.5 12.2 16.5
random-15 98.9 34.8 50.3 37.6 47.3 174.2 138.5 16.7 2.8 3.0 3.0 45.6 16.4 20.0
random-20 92.6 37.2 50.9 40.0 47.1 153.9 129.3 28.3 2.6 2.7 2.7 60.3 22.8 27.1
random-25 85.5 38.2 50.3 41.4 43.6 129.1 113.8 47.7 2.6 2.8 2.7 84.8 36.2 40.8
random-30 78.5 38.3 49.3 42.4 38.7 105.7 97.3 81.6 2.5 2.9 2.8 121.7 59.9 64.9
random-35 71.5 37.7 47.5 42.6 32.9 84.0 80.2 154.8 2.6 3.3 3.1 190.5 117.8 119.1
random-40 66.6 37.1 46.4 42.8 28.5 69.9 68.4 193.8 2.8 4.3 3.8 204.4 178.6 167.1
room-8 69.8 3.2 4.2 4.1 4.1 10.2 10.1 127.6 23.6 23.7 24.2 257.3 152.9 156.1
room-16 81.0 0.6 0.8 0.8 0.8 1.8 1.8 158.2 110.8 119.4 119.6 445.5 333.0 333.9
room-32 92.9 0.1 0.2 0.2 0.2 0.3 0.3 147.1 398.4 449.0 446.6 761.5 659.3 659.4
room-64 101.6 0.0 0.0 0.0 0.0 0.1 0.1 95.4 1137.4 1208.1 1199.9 1214.8 1156.7 1149.2
street-256 103.4 7.4 3.1 2.1 4.4 3.8 3.1 7.0 17.8 55.9 52.1 47.0 64.1 67.1
street-512 112.5 6.3 1.6 1.0 3.5 1.8 1.4 7.8 34.4 151.7 137.5 113.7 198.1 204.4
street-1024 118.7 4.8 0.7 0.4 2.5 0.7 0.5 9.0 66.8 512.3 418.8 254.2 701.7 735.9
GPPC-game 105.2 5.5 2.4 1.9 3.1 2.6 2.3 51.9 32.2 138.5 130.5 178.0 289.9 288.9
GPPC-maze 88.2 0.3 0.2 0.2 0.2 0.3 0.3 480.0 399.5 921.2 821.2 4827.2 5394.4 5173.5
GPPC-random 74.8 38.1 48.4 42.7 35.8 94.1 88.6 208.7 2.3 2.5 2.4 328.1 170.7 176.7
GPPC-room 111.0 0.6 0.9 0.9 0.5 1.8 1.7 47.2 261.6 275.9 271.9 657.2 408.6 405.2
GPPC-All 98.2 6.0 6.7 5.9 5.2 12.6 11.8 305.3 34.8 40.8 39.2 1757.2 1477.5 1485.5

Table 2: Number of edges relative to the grid graph G and the speed up over A* on G. All maps from MovingAI benchmarks are included,
except for the (lexically) last 20 of the 30 street-1024 maps, due to high CH-SG preprocessing times.


