
Online Computation of Euclidean Shortest Paths in Two Dimensions

Ryan Hechenberger, Peter J Stuckey, Daniel Harabor,
Pierre Le Bodic, Muhammad Aamir Cheema

Faculty of Information Technology, Monash University, Australia
{Ryan.Hechenberger, Peter.Stuckey, Daniel.Harabor, Pierre.LeBodic, Aamir.Cheema}@monash.edu

Abstract

We consider the online version of Euclidean Shortest Path
(ESP): a problem that asks for distance minimal trajectories
between traversable pairs of points in the plane. The prob-
lem is made challenging because each trajectory must avoid
a set of non-traversable obstacles represented as polygons.
To solve ESP practitioners will often preprocess the environ-
ment and construct specialised data structures, such as visi-
bility graphs and navigation meshes. Pathfinding queries on
these data structures are fast but the preprocessed data be-
comes invalidated when obstacles move or change. In this
work we propose RAYSCAN, a new algorithmic approach for
ESP which is entirely online. The central idea is simple: each
time we expand a node we also cast a ray toward the target.
If an obstacle intersects the ray we scan its perimeter for a
turning point; i.e. a vertex from which a new ray can continue
unimpeded towards the target. RAYSCAN is fast, optimal and
entirely online. Experiments show that it can significantly im-
prove upon current state-of-the-art methods for ESP in cases
where the set of obstacles is dynamic.

Introduction
Finding an obstacle-avoiding shortest path, in two dimen-
sions, is an often studied problem with many practical appli-
cations. In robotics and computer games, for example, it is
desirable to compute paths that are as short as possible and
as quickly as possible. Quickly, because computational re-
sources (CPU, memory) are often restricted. Short, because
such paths minimise travel distance and because they sat-
isfy other more subjective criteria. For example, a human
observing the execution of a path planning agent may con-
sider that agent to be “more intelligent” if its planned trajec-
tory is free from detours. Another important aspect for path
planning is the ability to account for dynamic changes that
occur in the environment (e.g. a fallen tree blocks a path or a
player adds or destroys a building in a computer game). We
categorise works from this area into three distinct (and over-
lapping) categories: any-angle techniques, visibility graphs
and mesh-based navigation.

Any-angle techniques discretise the set of obstacles us-
ing a fixed resolution grid but then proceed to find so-called
any-angle paths, which are not restricted to the points of

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the grid (Daniel et al. 2010). Any-angle paths are desirable
because they can be substantially shorter than their grid-
optimal counterparts. State of the art works in this area, such
as Anya (Harabor and Grastien 2013), compute optimal any-
angle paths quickly and online, where we consider online
to be with little setup overhead. In the event of dynamic
changes, the grid map can be updated in constant time.
The main drawback to any-angle pathfinding is that obsta-
cles must be rasterised approximately using the fixed resolu-
tion grid. This leads to suboptimality in practice, where the
grid approximation and the reality mismatch. Meanwhile,
increasing the resolution of the grid slows search.

Visibility Graphs (VGs) are another family of well
known techniques that work by preprocessing the environ-
ment to obtain a graph of co-visible points (Lozano-Pérez
and Wesley 1979). Using such a graph allows obstacles to
be represented accurately, eliminating mismatch and allow-
ing Euclidean Shortest Paths to be computed precisely. The
main drawback is twofold: (i) VGs require an often pro-
hibitive precomputation step and; (ii) updates to the environ-
ment invalidate the graph. Repair or recomputation times for
VGs are, again, often prohibitive (Hong, Murray, and Wolf
2016).

Mesh-based planners are a family of techniques which
have the combined strengths of any-angle path planning and
VGs. Here the environment is lightly preprocessed to obtain
a “navigation mesh”; a data structure that comprises a set
of convex non-overlapping traversable polygons1. State of
the art works such as Polyanya (Cui, Harabor, and Grastien
2017) compute paths extremely fast and they allow the neg-
ative space around obstacles to be represented exactly. This
means optimal paths on the mesh are guaranteed to be short-
est paths in practice. Meanwhile, dynamic changes are han-
dled online, via localised repair of the navigation mesh. A
main drawback is that repair operations typically require
more than constant time (van Toll, Cook IV, and Geraerts
2012). Thus, depending on the set of dynamic changes, and
their frequency, the cost of repairing a navigation mesh may
come to dominate the total running time of the algorithm.

In this work we propose RAYSCAN, a new approach for
computing Euclidean Shortest Paths. Unlike existing tech-

1In some applications (e.g. games), the mesh may be con-
structed by hand. Such planners are therefore “preprocessing-free”.

N1

N2N3

N4N5

N6N7

N8

n4 n5

n6
n1

n2 n3

u

t

I

(a) Points order

v3u

v2
v1

w

s

t

(b) Projection field

Figure 1: (a) Points n1, n2, · · · , n6 orientate ccw. Points
N1, N2, · · · , N8 orientate cw. (b) Projection field for u is
AS(~su, ~uv3).

niques, RAYSCAN does not depend on any pre-computation
of the environment: given a set of obstacles it computes di-
rectly and in an online fashion a Euclidean Shortest Path for
a distinguished pair of traversable start and target positions.
The first ingredient is ray shooting: the algorithm follows a
direct trajectory from a specified location to the target node,
stopping only if an obstacle impedes the ray. The second
ingredient is scanning. Once an obstacle is detected the al-
gorithm scans its perimeter looking for a traversable point
from which a new ray can continue, unimpeded toward the
target. We give a thorough description of the algorithm and
we provide proofs for correctness and optimality. In an em-
pirical evaluation we compare RAYSCAN to Polyanya (Cui,
Harabor, and Grastien 2017), the most performant ESP tech-
nique of which we are aware. Results show that RAYSCAN
improves on this leading algorithm in cases where the envi-
ronment regularly changes and where the Polyanya naviga-
tion mesh must be continuously repaired.

Overview of RAYSCAN
RAYSCAN is presented in this paper as a 2D ESP, made
to work with a 2D environment, represented as set of non-
intersecting polygonal obstacles (inner-obstacles), and a
single enclosing polygon (enclosure or outer-obstacle),
where all inner-obstacles are within and non-intersecting.
The outer-boundary is defined as the convex hull of the
enclosure.

RAYSCAN does not provide the method of searching,
rather it can be view as a fast method of producing a sub-
set of edges for a VGs during the search. This paper uses the
A* algorithm (Hart, Nilsson, and Raphael 1968) to drive the
search, using start (s), target (t) and points on the polygons
(like VGs) as the nodes in the search. When pushing a suc-
cessor edge ~uv, the edge weight is the Euclidean distance
from u to v, | ~uv|.

During the search, we expand nodes by producing suc-
cessors. The expanding node will always be denoted by u
throughout the paper.

The search is directed with the heuristic function h(v) =
|~vt|. The minimum f value would be the next node to expand,
which is given as f(v) = g(u) + h(v), where g(u) is the

g value (the shortest path to u).
The search is directed by ray shooting, where a ray is

shot from u along a direction vector, then returns the first
polygon hit and its intersection. This ray gives us an ob-
structing obstacle that we need to navigate around, which
in a 2D environment, is restricted to two ways, clockwise
(cw) or counter-clockwise (ccw) around the obstruction.
This presents the second concept, the scan phase, where we
trace a scan line along the polygon in a cw or ccw direction
w.r.t. u. e.g. a cw-scan will have a scan line from u, starting
at the intersecting point of a ray, we will follow the edges of
the polygon in a cw direction around u. The scan will con-
tinue until the scan line reaches a point where continuing the
scan will force the line to rotate ccw, which we designate as
a turning point. If there are no obstacles between u and a
turning point, it is also a visible point and may be a succes-
sor node to the search, otherwise it is a blocked point.

Since a scan is made up of many other recursive scan, the
whole process of this scan starting from the initial scan is
called a full scan. This is relevant since the generation of
successors for any node will perform multiple full scans.

The order of the points in the polygon obstacles are rel-
evant to be able to scan efficiently. In this paper, the inner-
obstacles points have a ccw orientation, while the enclosure
has a cw orientation. Refer to Figure 1a, node u can scan
ccw from intersection I to n5 and n4 (points decreasing),
although to scan further will result in a cw direction w.r.t.
u, thus n4 is the turning point. The cw scan will find points
increasing and end at the turning point n6. The enclosure
points are ordered the opposite orientation in order to main-
tain the decreasing index for ccw scan and increasing for
cw, since we are following the polygon from the inside.

A point on a polygon is considered to be a concave point
if its inside angle is more than 180◦ (e.g. n3), or convex
point otherwise (e.g. n1, N4). Expanding nodes, with the
possible exception of s, would always be convex.

The angled sector or sector is defined from the expand-
ing node u. We define a region by two angles (can be
represented by vectors), from the ccw angle accw turning
cw to the cw angle acw. Let angle sector be defined as
AS(accw, acw), take the example from Figure 1a, the angled
sector AS(~un4, ~un6) from an expanding u shows that points
like t, n3 and n6 lay within this sector (as ray ~ut is on or be-
tween ~un4 to ~un6) but points n2 and N6 are outside the sec-
tor. If accw and acw are the same angle, than it is treated as
any point p whose angle ~up are equal are inside the sector,
otherwise all points are outside. The angle sectors restrict
the scan space. Every scan has an associated angle sector,
where if its scan line ever leaves the angle sector, the scan
ends with no turning point been found. A scan can also end
when we find a point on the outer-boundary.

Every expanding point has a special angle sector know
as the projection field. The projection field for s is a spe-
cial type of angle sector known as a whole sector WAS(a),
which considers that all angles falls within. All other expan-
sion projection fields are formed based of its predecessor
point P (u). For example, in Figure 1b the shaded region is
u’s projection field.

A

B C

D

EF

a b

cd
s

t

(a) shoot target

A

B C

D

EF

a b

cd
s

t

I

(b) scan ccw to A, then cw to
D

A

B C

D

EF

a b

c
d

s

t

I

(c) shoot D and scan intersec-
tion

A

B C

D

EF

a b

c
d

s

t

I

(d) d is successor, scan within
angle sector

A

B C

D

EF

a b

c
d

s

t

(e) expand d, c is successor

A

B C

D

EF

a b

c
d

s

t

(f) expand c, D is successor

A

B C

D

EF

a b

c
d

s

t

(g) expand D, E is successor

A

B C

D

EF

a b

c
d

s

t

(h) expand E, t is visible

Figure 2: RAYSCAN Example - The dashed line is a ray shot, it turns dash dot line after intersecting with a polygon. Each
corner scanned by RAYSCAN is shown by a dotted line from s to the corner. The solid lines are edges on the shortest path.

RAYSCAN by Example
Figure 2a: consider the shortest path query from s to t
shown. The first thing we should do in searching for a short-
est path from s to t is determine if t is visible from s. Hence
we shoot a ray from s to t. If this is unblocked we are fin-
ished. Otherwise we will hit an obstacle (actually the enclo-
sure) as illustrated, the edge (B,C).
Figure 2b: we must go around the obstacle. We first identify
the projection field of s to be WAS(~st). We then scan cw or
ccw from intersection I . The scan looks for a turning point
on the obstacle for a path from the current expanding point
s.

Scanning ccw, we find no turning point before we reach
A, which is a point on the outer-boundary. We know that
when a scan reaches an outer-boundary point, a successor
on the shortest path would be found, so end the scan with no
turning point.

We then scan cw and find the turning point D, since trac-
ing from D to E would result in the scan going ccw.
Figure 2c: we shoot a ray from s to our turning point D and
find that it is blocked by (d, a), thus is not a visible point.

For a non-visible point, we will try to find a path that
can lead to it, so we do as we did with t and scan cw and
ccw around the obstacle edge (d, a). This however requires
a slight alteration of the sector to prevent a possible looping
of scans. The modification will be a split along the ray (this
case ~sD) of the current sector, such that a cw scan will hold
the cw half, while ccw the ccw half. Since we currently
have a whole sector, we will split it up to the original ray
~st, thus the ccw scan will use AS(~st, ~sD) and the cw scan
AS(~sD, ~st).

We begin a scan on this obstacle in the ccw direction,

which is reversed from the scan that lead to D. We find the
turning point d and shoot a ray to d, finding it is a visible
point. Point d must be a neighbour of s in the VGs and is
pushed onto the A* queue as a successor of s. Next instead
of doing the cw scan, we will continue scanning this sector,
as this method scans recursively.
Figure 2d: since we found a visible point, we have no ob-
stacle to navigate around. For this case, we continue the ray
past d and hit the edge (C,D). We will only do a scan in the
same direction as the scan that found d (ccw), as doing a cw
scan here will have us search within the sector AS(~sd, ~sD),
which is blocked by the obstacle we just scanned.

Therefore we only scan ccw, using the ccw split along
~sd to give the sector AS(~st, ~sd). This scan will result in the
sweep line leaving the sector when crossing from C to B,
thus the scan ends with no turning point found.

The scan recurses back to do the cw scan from ~sD, finding
the visible point a and adds it to the queue. The ray itself hits
an edge on the outer-boundary, where a continuation scan
cw will reach the point on the outer-boundary and end, thus
the recursion recurses back to the start ~st which has already
scanned both directions, thus the expansion of s is complete.
Figure 2e: now we pop the lowest f value point of the
queue, d. Since we are only interested in paths that turn we
will restrict the region the scan occurs to its projection field
AS(~sd, ~dc). We first check if t falls within the projection
field of d, which ~dt does not, thus we cannot shoot towards
the target. There are two other avenues to reach t from d, to
turn around its own polygon (along ~dc) or to turn out of its
projection field (along ~sd). We will need to check both.

We shoot a ray from d in the direction ~sd (the projection

field’s accw), getting blocked by (C,D) and scan cw with
the projection filed, finding no turning point before leaving
the sector. We do not need to scan ccw since that will im-
mediately leave the sector. We shoot a ray ~dc and hit not an
edge, but a point c. At this case we need to check if c can be
a successor from d and find that it can, therefore we add c
as a successor. The ray continues past c and get blocked by
edge (C,D), thus we scan ccw and find no turning point.

Next we pop a off the queue, its scan adds b to the queue
but nothing else.
Figure 2f: when c is popped off the queue, it has the projec-
tion field AS(~dc, ~cb). Following the process from d, we find
that ~ct is not within the projection field.

We start a scan to turn out of the projection field by shoot-
ing the ray from d along its accw ~dc, blocked by the edge
(C,D). Scanning cw we reach the visible point D and add
it as a successor of c. The recursion hits the outer-boundary
and thus ends.

The scan to turn around c’s obstacle occurs in much the
same way as d did, thus the ray ~cb finds b as a successor then
ends due to encountering the outer-boundary.
Figure 2g: we pop D off the queue, and expand it. We do
not shoot to target due to being outside its projection field
AS(~DE, ~cD). Shooting a ray ~DE will find E as a successor
and then end, then shooting the ray ~cD will hit the outer-
boundary and also end.

The next lowest f value will be b. When following the
same process, it will find point c and D, though these will
not be added as b’s successors due to its f value being higher
than their current ones.
Figure 2h: the final node to expand is E. The target ray
~Et falls within the projection field AS(~EF , ~DE), thus we

shoot the ray ~Et. Since t is visible, there is no need to find
any other successors.

We can say we have now found the shortest path, since
with our heuristic, g(t) = f(E).

RAYSCAN
RAYSCAN expands nodes by generating the successors on-
the-fly, as detailed in Algorithm 1.

The function START SUCCESSORS (line 1) is the initial
call. The first action is to shoot a ray from s to t (line 2),
which gives up the blocking polygon p and its intersection
point to the ray I . If t is visible, then the optimal path has
been found (line 4). Otherwise, we have an obstacle imped-
ing t, thus we need to do a full scan cw and then ccw of
p from the intersection I (lines 7 to 8). These scans use
WAS(~ut) representing the 360◦ angle sector, which is a spe-
cial case of an AS(~ut, ~ut) except instead of only vectors an-
gled to ~ut falling within, it allows all angles.

The SHOOTRAY(u, a) function handles the shooting of
rays. It shoots a ray from point u in direction a, adding a
potential successor and returning the polygon p and inter-
section point I with the polygon that eventually blocks the
ray. Note that all rays will hit something because of the en-
closure. An example of a ray shoot is shown in Figure 3,
points vi signify collinear nodes that are hit by the ray but

Algorithm 1 Generate u’s successors within projection field

1: function START SUCCESSORS
2: (p, I)← SHOOTRAY(s, ~st)
3: if t is visible from s then
4: return optimal path to t
5: end if
6: F ←WAS(~st)
7: SCAN(s, p, I , F , cw)
8: SCAN(s, p, I , F , ccw)
9: end function

10: function SUCCESSORS(u, F = AS(accw, acw))
11: if ~ut is within AS(accw, acw) then
12: (p, I)←SHOOTRAY(u, ~ut)
13: if t is visible from u then
14: return optimal path to t
15: end if
16: SCAN(u, p, I , AS(~ut, acw), cw)
17: SCAN(u, p, I , AS(accw, ~ut), ccw)
18: end if
19: (p, I)← SHOOTRAY(u, accw)
20: SCAN(u, p, I , F , cw)
21: (p, I)← SHOOTRAY(u, acw)
22: SCAN(u, p, I , F , ccw)
23: end function
24: function SHOOTRAY(u, a)
25: if ray hits one or more turning points then
26: n← first turning point n hit
27: PUSH SUCCESSOR(u, n)
28: end if
29: Let (p, I) be the first polygon p blocking the ray
30: at intersection I
31: return (p, I)
32: end function
33: function SCAN(u, p, I , F = AS(accw, acw), d)
34: scan p from I in direction d to
35: find a turning point n
36: if scan goes out of F or
37: touches part of the outer-boundary then
38: return
39: end if
40: (p′, I ′)←SHOOTRAY(u, ~un)
41: if n is visible from u then
42: if d = cw then
43: SCAN(u, p′, I ′, AS(~un, acw), cw)
44: else
45: SCAN(u, p′, I ′, AS(accw, ~un), ccw)
46: end if
47: else
48: SCAN(u, p′, I ′, AS(~un, acw), cw)
49: SCAN(u, p′, I ′, AS(accw, ~un), ccw)
50: end if
51: end function

v3

v1

v2

I

s

t
p

Figure 3: Ray shot on collinear points

are not blocking it, which is handled by lines 25 to 28. Out of
these points only the closest point (v1 in this case) is added
(line 26). The function returns the blocking polygon p and
the point of intersection I with this polygon (line 31).

The SUCCESSORS(u, F = AS(accw, acw)) function is
used to generate successors for any expanding node u (ex-
cluding s) which fall within the projection field F =
AS(accw, acw). Like START SUCCESSORS, we first shoot a
ray at the target and scan if blocked (lines 11-18), except
this is only done if the target ray ~ut falls within F . The scan
also splits F along the target ray ~ut, where we use the cw
split to scan cw and the ccw split for the ccw scan.

After handling the target, if t was not visible, then we need
to shoot a ray towards both extremities of the projection field
and then scan inwards. This will find the successors within
the field that bends around obstacles that could lead out of
the projection field in both orientations. First, we shoot a ray
towards the ccw extremity (line 19) and scan cw direction
from its intersection (line 20). Then, we shoot a ray towards
cw extremity and scan ccw (lines 21 and 22). Each of these
scans potentially adds entries to the queue.

The call SCAN(u,p,I ,F = AS(accw, acw),d) scans along
polygon p in direction d starting from intersection point I
on the polygon, remaining within the projection field F . We
skip along the polygon p until we find a turning point n
(lines 34 and 35). If the scan from I to n at any point is not
within F (line 36), then the scan halts without finding any
turning point. The scan also halts when it touches any part
of the outer-boundary (line 37), as we cannot “bend around”
parts of the outer-boundary.

When we find a turning point n, we shoot a ray to this
point (line 40), which will determine if n is a visible point
from u, which is a point of interest. Remember, SHOOTRAY
will only add n as a successor if it is the first collinear point
hit, e.g. n = v1 is added from s, n = v3 however will not,
even though both points are visible. Regardless of whether n
is visible or not, SHOOTRAY finds the polygon p′ that blocks
the ray and returns it. We then need to search for more suc-
cessors; if n is visible, then we want to continue the scan in
the same direction (lines 42–46). This will continue the scan
from the blocking polygon p′ that lies past n, although sec-
tor F is split along ~un and only the d part of the split is taken
for the scan, as we have already scanned the other side. If n
is blocked, then F is still split but we will scan both sides,
recursing the scan cw and ccw (lines 48–49).

Correctness
We begin with an informal argument about correctness of the
algorithm. First of all, all shortest paths in the VGs only ever
bend around obstacles (see e.g., (Rohnert 1986)). Hence, the
restriction to looking for visible turning points in the projec-
tion field of a node is valid.

The algorithm tries to go directly to the target if possible.
If it hits an obstacle then it will try to go around the obstacle
by scanning in each direction for possible turning points.

The on-the-fly generation of part of the VGs does not gen-
erate all possible VGs entries for node u that fall within its
projection field F . There are three cases to consider.

If t falls within F then we shoot a ray towards t. If t is not
visible from u blocked by a polygon p, we scan to go around
the obstacle p either clockwise or counter-clockwise. Note
that we will never directly consider obstacles visible from
u in F which are not within the angle sectors to the points
AS(~ut, acw) and AS(accw, ~ut). This is safe since no such
obstacle can be involved in a shortest path to t from u unless
one of the direct edges to ncw or nccw is blocked.

If the edges are blocked then we perform a reverse scan
to find a way to try to reach one of the turning points. For
example in Figure 4b, the ray ~ut is blocked by an edge of
the polygon pc and the two scans lead to its endpoints n1

and n2 which are also not visible from u (blocked by pb and
pd, respectively). The recursive reverse scans on pb and pd
find the two points x4 and x5 which are turning points that
will allow us to reach the endpoints n1 and n2.

Similarly the shortest path may not be direct to t, then we
shoot rays along the extremes of the projection field acw and
accw. The scans starting from these ray shoots may termi-
nate without crossing if they both hit the outer-boundary. In
this case objects in the projection field F or u which lead
to entries in the VGs are ignored. This idea of shooting ray
along the extremes is that we are trying to find valid suc-
cessors that will lead to a path leaving the projection field,
which is especially important for when t does not fall within
the projection field, though is still required regardless.

The visible points within the projection field that are not
found as successors we will prove cannot possibility be part
of any optimal path. The idea behind this is that visible
points are first identified as turning points from a scan, which
requires a ray to hit the edge in question that will lead to the
turning point. In other words, the discovery of an optimal
successor is dependent on a ray shooting to direct the search.

As consequence of this, these successors not found may
be discovered further on in the search, which would result
in a non-optimal path to such successors. The guarantee is
that no nodes on a shortest path to the target will have this
property.

We now formally argue the correctness of the algorithm.
Given a node u, we say that a polygon p is visible from u

along a point xi if the ray ~uxi hits the polygon p. Figure 4a
shows a polygon p with vertices n1 to n12. It is visible along
the points x1 and x2 (see the dashed rays). The polygon p
is not visible along n1 or v. We denote the point where the
ray ~uxi hits p as zi (see z1 and z2). We define a futile poly-
gon FP<u,x1,x2,p> of the form u, z1, ni, ni+1, · · · , nm, z2

x1 x2

v
n1

n2n3

n4n5

n6 n7

n8 n9

n10 n11

n12

u

t

z1

z2

y

(a) Futile Polygon

x3

x4

n1 n2

x5

x6x2

u

t

x1 x7
pa

pb

pc

pd

pe

z2

z3

z4 z5

z6

(b) Lemma 2

Figure 4

where each ni is a vertex of p. In Figure 4a, the futile poly-
gon is u, z1, n7, n8, · · · , n12, z2.

Lemma 1. Let p be a polygon which is visible from u along
two points x1 and x2. If the target t lies outside of the fu-
tile polygon FP<u,x1,x2,p> then the shortest path from u to
t cannot pass through any point v strictly inside this futile
polygon.

Proof. We prove this by contradiction. Assume that the
shortest path from u to t passes through a point v strictly in-
side the futile polygon. Such a path must cross either uz1 or
uz2. Without loss of generality, assume that the path crosses
uz1 at a point y. Then, uy is shorter than uvy which contra-
dicts that the shortest path passes through v.

Lemma 1 implies that, when t is outside the futile polygon
of u, we do not need to consider successors of u that are
strictly inside the futile polygon. Before we present the next
lemma, we explain another notation. Note that there is at
least one polygon that is visible from u along each xi (is hit
by the ray ~uxi). We use pcw

i to refer to the first polygon that
is touched or hit by ~uxi and extends in the cw direction of
xi. Similarly, we use pccw

i to refer to the first polygon that
is touched or hit by ~uxi and extends in the ccw direction of
xi. Consider the example of Figure 4b that shows execution
of SUCCESSORS(u,F) where the projection field is between
~ux1 and ~ux7. For point x4, the ray ~ux4 hits two polygons pb

and pc. The first polygon that is hit by this ray and extends in
cw direction of x4 is pc. Thus, pcw

4 is pc whereas pccw
4 is pb.

Similarly for x3, pcw
3 is pb and pccw

3 is the enclosure (which
is hit at point z3 by ~ux3). For x1, pcw

1 and pccw
1 both are pa.

Lemma 2. Let S be the set of successors pushed by the call
SUCCESSORS(u,F). Furthermore, let eccw and ecw be two
extreme points (not necessarily vertices of any polygon) hit
by the rays towards the ccw and cw extremes of F, respec-
tively. Let X = S ∪ eccw ∪ ecw be sorted in clock-wise order
and numbered 1 to m such that x1 = eccw and xm = ecw
(e.g., see x1 to x7 in Figure 4b). For every i < m, there
exists a polygon p that is visible along both xi and xi+1.

Proof. xi and xi+1 will never be collinear w.r.t. u, as
SHOOTRAY(u, a) returns only the first turning point hit by
the ray a. Thus, we only need to prove for the case assum-
ing X does not contain such collinear points. Next, we show
that pcw

i is visible along both xi and xi+1.
Case 1: (xi+1 is on pcw

i). See xi = x3, xi+1 = x4 and
pcw
3 =pb in Fig. 4b representing this case. Since xi+1 is visi-

ble and is on pcw
i , pcw

i is visible along both xi and xi+1.
Case 2: (xi+1 is not on pcw

i). See xi = x4, xi+1 = x5 and
pcw
4 =pc in Fig. 4b representing this case. We use ~un to de-

note a ray by which the algorithm discovered pcw
i , i.e., ~ut

discovers pc in Fig. 4b. Since xi+1 is not a point on pcw
i ,

xi+1 must be on a polygon p that blocks pcw
i . Note that p

cannot extend beyond xi+1 in ccw direction. Otherwise, ei-
ther p will generate a successor in ccw direction which is
not possible (because xi and xi+1 are consecutive succes-
sors in sorted order) or p extends beyond ~un in ccw order
which is also not possible because the ray ~un hits pcw

i and
is not blocked by any polygon p. Since p does not extend
beyond xi+1 in ccw direction, xi+1 must have been discov-
ered by the algorithm while scanning p in ccw (from some
point on p that lies in cw of xi+1). Recall that, for each visi-
ble point xi+1, SHOOTRAY(u, ~uxi+1) returns an intersection
on a polygon p′ that obstructs the ray ~uxi+1 (line 40 in Al-
gorithm 1) and continues scanning p′ in the same direction
(line 42 to 46 in Algorithm 1), i.e., ccw direction in this case.
Thus, the algorithm continues scanning p′ in ccw direction.
We prove that p′ = pcw

i which proves pcw
i is visible along

both xi and xi+1 (because p′ is visible along xi+1). Note
that no visible turning point can be found by scanning p′

in ccw direction as xi and xi+1 are consecutive successors.
Furthermore, the scan and potential recursive scans resulting
from it terminate only if a scan extends beyond the projec-
tion field (i.e., beyond ~un in ccw direction) or if it touches
the outer-boundary. The scan cannot extend beyond ~un in
ccw direction because it would imply that p′ or some other
obstructing polygon p′′ from the recursive scans blocks pcw

i
for the ray ~un which is not true. If the scan touches the outer-
boundary, it implies that p′ is the outer-obstacle which can-
not obstruct pcw

i unless pcw
i itself is the outer-obstacle. Thus,

p′ must be pcw
i .

Lemma 3. Let S be the set of successors pushed by the call
SUCCESSORS(u,F). Let v /∈ S be a node in the complete
VGs that lies within the projection field F . The shortest path
from u to t does not need to consider v.

Proof. Let X be as defined in Lemma 2. Since v lies within
the projection field, it must lie between xi and xi+1 for some
i. As per Lemma 2, there exists a polygon p which is visible
along both xi and xi+1. Since v is visible from u and lies
between xi and xi+1, it must lie within the futile polygon
FP<u,xi,xi+1,p>. Furthermore, if t lies inside the projection
field F and is visible from u, it is already added as a succes-
sor of u (thus uvt is no shorter than ut). Otherwise, t must
lie outside of this futile polygon. Therefore, v cannot be on
the shortest path from u to t (Lemma 1).

Theorem 1. RAYSCAN returns an optimal path from s to t.

Proof. The initial scan from s finds all successors that could
be on a path to t. The proof is analogous to Lemma 3 where
the projection field is the whole space. Furthermore, we
know (Rohnert 1986) that we only have to consider succes-
sors in the projection field of a node u on any optimal path.
Lemma 3 implies that SUCCESSORS finds all successors of
a node u within the projection field that could be part of the
shortest path to t. Since the algorithm always pushes a suffi-
cient set of the successors of the entire VGs and adds correct
successors for s, it explores any optimal path possible in the
VGs, and hence finds the optimal path.

Experimental Results
We compare the RAYSCAN approach against the state-of-
the-art Euclidean pathfinding method Polyanya (Cui, Hara-
bor, and Grastien 2017). Polyanya is the fastest method
we are aware of for optimally solving ESP with no pre-
computing required (except for creating the mesh).

The tests were conducted using the Moving AI 2D
pathfinding benchmarks for grids (Sturtevant 2012). These
benchmarks include many groups of tests, separated by
games, along with random, mazes and street maps. The
maps contain an octile grid with blocked and traversable
cells, along with a scenario file filled with hundreds or thou-
sands of scenarios, each with a start and target point spec-
ified by Cartesian coordinates. For our instances, these are
treated as points in the bottom-left corner of each cell.

To run RAYSCAN on these benchmarks, the blocked cells
were traced to construct a set of inner-obstacles and enclo-
sure. If there are multiple enclosures found, then the largest
by area is kept while discarding the rest. Afterwards any
polygon outside this enclosing are removed, along with any
polygon inside another, which can occur when an enclosing
polygon was within another.

If two obstacles touch each other at a point (see D6 in
Figure 5a), it is ambiguous if passing through this touching
point is allowed or not. To avoid such ambiguous cases, we
cut a cell for every concave corner of each polygon. E.g.,
see the dashed lines in Figure 5a. This changes the input
polygons and generates smoother looking polygons, e.g., the
stairs from D0 to H4 are changed to a diagonal line and the
new polygon is the area shown shaded (light and dark). Con-
sequently, some s and t instances in the benchmarks may lie
in an invalid location, i.e., inside a modified obstacle or out-
side the enclosed polygon. These instances are removed.

The ray casting method used by RAYSCAN makes use
of spatial filtering with a modified Bresenham’s algo-
rithm (Bresenham 1965). We fill in a square grid with the
polygon lines using Bresenham’s. When we cast a ray, we
draw a line from its start in the ray’s direction, performing
line intersection tests of all polygon lines found from the
filled in cells it passes through.

Polyanya is given as input the same as RAYSCAN. Since
Polyanya requires a navigation mesh, the polygon obstacles
were converted using modified code from (Cui, Harabor, and
Grastien 2017), which also makes use of Fade2D2 for a

2https://www.geom.at/products/fade2d/

Constrained Delaunay Triangulation, generating the trian-
gles needed for the navigation mesh.

The experiments were all run on on a single core of an In-
tel Core i7-8750H fixed at 2.2GHz, with 16GB of RAM.
Each instance ran six times, dropping the minimum and
maximum search times, then averaged.

Comparison
We compare RAYSCAN against Polyanya and base our re-
sults on how the search benefits from lower setup cost and
how speeding up the ray shooting will result in a fast search.

Figures 5b and 5c compare the search time of 200 in-
stances of the map arena2 and Aurora, which are picked
from equidistant in order as was given in the Moving AI
benchmarks for the maps.

These figures directly compare Polyanya time (x-axis) to
RAYSCAN time (y-axis) for each instance. A dividing line
is added to show how they compare, where above the line
Polyanya runs faster, while below RAYSCAN does. These
results shows that while our method is running slower while
using a Bresenham’s line to shoot our rays, these runtimes
are still within the low milliseconds, which is much less time
then constructing a navigation mesh.

We have a second comparisons (the triangles), which uses
an oracle to shoot the ray. This acts as a baseline to how fast
RAYSCAN could reach if ray shooting was cheaper to do.
These fall below the lines with these examples while others
shows it along the line (thus as good as Polyanya).

Table 1 gives more precise picture on the idea of tak-
ing the setup costs into account. Column Ps is calculated
as the time it take to perform Fade2D Constrained Delau-
nay Triangulation, while column Rs includes the creation of
RAYSCAN nodes for search and the filled grid for Bresen-
ham ray shooting to be performed.

We can see that Polyanya takes more time to initialise
compare to RAYSCAN, especially for large maps like the
random maps. If we assume runtimes always take the 50th
percentile for each, both methods will need to perform c50
number of searches before the total search and setup time of
RAYSCAN exceeds Polyanya. The same for c90 using 90th
percentile. Looking at how c50 differs from c90, we see that
we can get many more short searches done compared to long
searches before RAYSCAN is overall slower, showing the
cost for RAYSCAN is number of expansions.

The ci variables shows that even though many searches
can be done in the time it takes to set Polyanya up, Polyanya
would still be better in most cases for static maps, with some
minor exceptions on a particular map (random/512-40-0)
with a few search instances, where RAYSCAN ran faster.
This is due to Polyanya repeating work.

What is really being examined is dynamacally environ-
ments, where changes to the obstacles may occur between
each search or on set intervals. This would require Polyanya
to perform some mesh repairs, whereas RAYSCAN will
mainly need to update its ray shooter to the changes (e.g.
our Bresenham’s shooter will undraw removed polygons and
draw added polygons). Tests on dynamically changing maps
remain as future work, although with Rs � Ps, the update
time is favorable to our method.

0 1 2 3 4 5 6 7
A

B

C

D

E

F

G

H

(a) Trimming Example

0 0.1 0.2
0

0.1

0.2

0.3

Polyanya (ms)

R
Y

A
S

C
A

N
(m

s)

Bresenham
Oracle
y = x

(b) DAO-arena2

0 1 2 3
0

2

4

6

8

Polyanya (ms)

R
Y

A
S

C
A

N
(m

s)

Bresenham
Oracle
y = x

(c) SC1-Aurora

Figure 5

RAYSCAN Polyanya
map # d Rs Rt R50 R90 Ps Pt P50 P90 c50 c90

dao/arena2 914 2.59 1.4k 94k 73 264 4.5k 53k 32 181 78 37.9
wc3/battleground 1015 5.45 4.1k 88k 71 179 14k 18k 11 40 163 71.3

sc1/Aftershock 1794 2.77 6.6k 544k 192 763 28k 173k 48 280 146 43.5
sc1/Aurora 2957 2.35 20k 5.7M 1.2k 5k 171k 1.9M 313 1.8k 175 46.8

random/512-10-0 1631 16.4 25k 15M 5.9k 23k 6.9M 2.4M 832 3.8k 1357 362
random/512-40-0 2389 2.17 23k 29M 9.7k 29k 1.7M 23M 5.7k 23k 427 272

rooms/30 000 1896 2.66 6k 510k 185 643 23k 231k 76 306 160 51.9
mazes/001 278 1.41 9.3k 559k 1.5k 4.8k 196k 172k 456 1.5k 176 55.8

street/Paris 1 256 1053 2.65 2.2k 385k 158 1.1k 23k 187k 53 567 198 35.9

Table 1: Selected maps benchmark: # field are the number of search queries; d the average successor RAYSCAN generates per
node; Rs and Ps is the setup times for the methods; Rt and Pt is the total search time (excludes setup); R50 and P50 is the 50th
percentile of search and R90 and P90 the 90th; c50 and c90 is how many instances RAYSCAN’s takes to exceed Polyanya at the
ith percentile, accounting for setup, i.e. Rs + ciRi ≈ Ps + ciPi. All times are in microseconds.

Related Work
A standard approach to the ESP problem is to create a VGs,
which maps each corner point on a polygon to the other cor-
ner points that it can see. By then inserting the start and tar-
get points into this graph (and learning which points are vis-
ible to them) we can perform an A* search from start to tar-
get. The disadvantage of this approach is that computation
of the VGs is expensive, and if the obstacles on the plane
are highly dynamic, then the re-computation of the VGs can
dominate the pathfinding run time (see e.g. (Wybrow, Mar-
riott, and Stuckey 2006)).

An alternate approach, Polyanya (Cui, Harabor, and
Grastien 2017), is to use a navigation mesh, which breaks
the free space into convex polygons, and then use specialised
methods to search through space of convex polygons. This
requires a navigation mesh which is much cheaper than to
construct the VGs but still requires significant computation.

The closest work to ours, also using ray casts, is in the the-
sis of Oprea (2017). This method tackles any-angle pathfind-
ing on an octile grid, and is limited to obstacles with hori-
zontal and vertical edges. Rather than find all the successors
of a node, this approach traces around obstacles, optimisti-
cally assuming paths are free and then checks the path is
clear after it reaches the target. Computational results (Oprea

2017) show it is far from competitive with Polyanya.
The obstacle avoidance algorithm Convexpath-sf (Hong,

Murray, and Wolf 2016) solves the ESP problem. Similar to
our approach it constructs a subgraph of the VGs that con-
tains the shortest path from s to t. This construction makes
use of the idea of only moving around an obstacles convex
hull to reach the target, if it determines the points inside the
hull are not needed. Then when it constructs these paths, it
determines if the edges are unobstructed (by ray cast), or it
finds another obstacle to navigate around. It also applies a
filter that can determine if adding in that obstacle may be
needed for the optimal path, reducing the size of the pro-
duced graph. Their results show an average running time
in seconds for larger maps, which is orders of magnitude
slower than Polyanya.

Conclusion
In this paper we introduce an online approach to navigat-
ing a 2D plane with non-convex polygonal obstacles which
requires minimal setup. While the time per search query is
slower than the state of the art Polyanya, its setup time is
very small. Thus it provides a compelling solution for navi-
gation in rapidly changing maps. There is scope to improve
its run time using hardware support for ray casting.

Acknowledgements
Muhammad Aamir Cheema is supported by Australian Re-
search Council FT180100140 and DP180103411.

References
Bresenham, J. E. 1965. Algorithm for computer control of
a digital plotter. IBM Systems journal 4(1):25–30.
Cui, M. L.; Harabor, D.; and Grastien, A. 2017.
Compromise-free pathfinding on a navigation mesh. In Pro-
ceedings of the 26th International Joint Conference on Arti-
ficial Intelligence, 496–502. AAAI Press.
Daniel, K.; Nash, A.; Koenig, S.; and Felner, A. 2010.
Theta*: Any-angle path planning on grids. Journal of Ar-
tificial Intelligence Research 39:533–579.
Harabor, D., and Grastien, A. 2013. An optimal any-angle
pathfinding algorithm. In Proceedings of the 23rd Interna-
tional Conference on Automated Planning and Scheduling,
308–311.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics 4(2):100–107.
Hong, I.; Murray, A. T.; and Wolf, L. J. 2016. Spatial fil-
tering for identifying a shortest path around obstacles. Geo-
graphical Analysis 48(2):176–190.
Lozano-Pérez, T., and Wesley, M. A. 1979. An algorithm
for planning collision-free paths among polyhedral obsta-
cles. Communications of the ACM 22(10):560–570.
Oprea, P. 2017. A Novel Online Any-Angle Path Planning
Algorithm. Ph.D. Dissertation, University of Kent,.
Rohnert, H. 1986. Shortest paths in the plane with convex
polygonal obstacles. Information Processing Letters 23:71–
76.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144 – 148.
van Toll, W. G.; Cook IV, A. F.; and Geraerts, R. 2012.
A navigation mesh for dynamic environments. Computer
Animation and Virtual Worlds 23(6):535–546.
Wybrow, M.; Marriott, K.; and Stuckey, P. 2006. Incre-
mental connector routing. In Proceedings of 13th Inter-
national Symposium on Graph Drawing, number 3843 in
LNCS, 446–457. Springer-Verlag.

