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Abstract
The JPS family of grid-based pathfinding algorithms can be
improved with preprocessing methods such as Geometric
Containers. However, such enhancements require a Dijkstra
search for every node in the grid and the space and time costs
of all this additional computation can be prohibitive. In this
work we consider an alternative approach where we run Dijk-
stra only from every node where a jump point is located. We
also compute and store geometric containers only for those
outgoing edges which are consistent with the diagonal-first
ordering in JPS. Since the number of jump points on a grid
is usually much smaller than the total number of grid cells,
we can save up to orders of magnitude of time and space.
In addition to improving preprocessing overheads, we also
present a partial expansion strategy which can improve the
performance of online search by reducing the total number of
operations on the open list.

Introduction
Pathfinding on uniform-cost grid is a common search prob-
lem arising in areas such as robotics and computer games. In
recent years there has been a significant amount of attention
given to this topic and a number of popular algorithms ap-
pear undominated on the Pareto front of successful entries at
the 2014 Grid-based Path Planning Competition (Sturtevant
et al. 2015). Among these winning methods is JPS+ (Hara-
bor and Grastien 2014), a preprocessing-based symmetry
breaking search technique that can improve the efficiency
of grid-based A* by up to hundreds of times.

When moving on a grid, JPS-based methods apply a
canonical ordering (Sturtevant and Rabin 2016) which takes
diagonal moves before straight moves whenever possible.
Since every node on the grid can be optimally reached by
a path that satisfies the rule, JPS+ can discard from consid-
eration any paths where diagonal moves appear later. The
pruning is applied recursively, which means that many nodes
can be processed immediately and without being explic-
itly added to the open list (e.g. whenever the successor set
of a candidate node is reduced to 0 or 1 neighbours). The
only nodes which remain, and which must be generated and
searched, are known as jump points.
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In its original form JPS runs entirely online and has no
memory overhead. A main disadvantage is that it must scan
individual rows and columns of the grid each time it expands
a node. JPS+ improves its performance by storing, for every
traversable cell, the first jump point or an obstacle that can
be reached in every direction.

A related variant, JPS+BB (Rabin and Sturtevant 2016),
further reduces search effort using Geometric Contain-
ers (Wagner, Willhalm, and Zaroliagis 2005), a well known
and target-oriented pruning technique. The addition of con-
tainers to JPS+ can improve performance tenfold. The price
for these gains comes in the form of additional time and
memory which must be invested during preprocessing. To
calculate all containers JPS+BB requires an all-pairs pre-
computation step that takes up to hours of additional time
and dozens of megabytes of additional memory. These over-
heads can be prohibitive in applications where CPU and
memory budgets available for path planning are limited.
Such is often the case in robotics and computer games.

This paper aims to improve JPS+BB in two ways: (1) pre-
processing and (2) online performance. To improve prepro-
cessing it is only necessary to precompute containers for grid
cells which are also jump points with the incoming direc-
tions and then only for outgoing edges which can appear on
some diagonal-first path. Since the number of jump point
locations is usually much smaller than the number of grid
cells, and since the total number of outgoing edges is dra-
matically reduced, this approach can save orders of mag-
nitude of preprocessing time and space. To improve online
performance we describe a partial expansion strategy which
can help to reduce operations on the open list, sometimes by
up to several factors. The combination of (1) and (2) yields
a new algorithm, JPS+BB+, and a corresponding new state
of the art for optimal pathfinding on static grids.

Problem Definition
We are interested in search problems on 8-connected grid
maps. In this domain each cell of the grid is marked as
traversable or as an obstacle. There are 8 available move
actions ~v (equiv. directions) which serve to transition the
search, from one cell to the next. The cost of each cardi-
nal (i.e. straight) move (denoted ~c) is 1 and the cost of each
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Figure 1: (a) When moving diagonally JPS always prunes all but 3
successors. (b) When moving straight JPS often prunes all but one
successor. (c) Sometimes JPS is forced to consider more than one
straight successor. Here, the lexically smaller path from node 7 to
node 1 and to node 4 is blocked because node 6 is an obstacle.

diagonal move (denoted ~d) is
√
2. A move is valid if it does

not begin or end in an obstacle. In addition, we enforce no-
corner-cutting constraints; i.e. we disallow diagonal transi-
tions between two traversable cells if they share a neighbour-
ing obstacle. Each search episode begins at a distinguished
cell known as the start and is considered successful if it fin-
ishes at a distinguished cell called the target. The objective
is to find a path (i.e. a sequence of valid steps) which is of
minimum cost among all paths from start to target.

We will sometimes refer to the cardinal directions
by name: {Up,Down,Left,Right} (U,D,L and R for
short). We will also say that each diagonal direction is the
result of combining two orthogonal cardinal directions; i.e.
~d = ~c1 + ~c2 ∈ {UL,UR,DL,DR}. Finally, we use the
algebra s′ = s+ k~d+m~c, with k and m as integers, to say
that the cell s′ is reached from s with k moves in direction
~d followed by m moves in direction ~c. Negative coefficients
in the algebra indicate moves in the opposite directions.

The JPS Family
Jump Point Search (JPS) (Harabor et al. 2011) is the com-
bination of A* with an online symmetry breaking procedure
that avoids redundant effort during search. We will say that
two paths are symmetric if they share the same start and tar-
get and; if they have the same cost and; their constituent
moves can be re-ordered to derive one path from the other.

To break symmetries JPS employs canonical ordering
known as diagonal-first. This rule is applied during search
to prune the set of successors, as illustrated in Figure 1. No-
tice that each pruned successor can be reached from the par-
ent of the current node along a path which has smaller cost
or which has the same cost but a smaller lexical prefix (i.e.
diagonal moves appear sooner). Diagonal-first pruning re-
duces not only the branching factor of each expanded node
but also the branching factor of each candidate successor, of-
ten to just 0 or 1. Rather than adding such nodes to the open
list, JPS immediately processes them as part of a recursive
jumping procedure. Jumping allows the search to generate
and expand only a distinguished set of nodes called jump
points at which diagonal-first paths can branch.

JPS+ and JPS+(P): A principal drawback of JPS is that
it scans individual rows and columns of the grid during each
expansion operation. JPS+ (Harabor and Grastien 2014) im-
proves JPS by calculating and storing, for every grid cell

n and every outgoing direction ~v, the distance from n to
the next jump point or the next obstacle in direction ~v. Cre-
ated during an offline preprocessing phase, this cached infor-
mation improves the runtime performance of search by up
to one additional order of magnitude. Further performance
benefits can be obtained using a strategy known as interme-
diate pruning (Harabor and Grastien 2014). This algorithm,
JPS+(P), treats all so-called diagonal jump points as “inter-
mediate nodes” which can themselves be “jumped over”.

JPS+BB: This algorithm combines JPS+ with Geometric
Containers (Wagner, Willhalm, and Zaroliagis 2005) instan-
tiated as Bounding Boxes. Geometric Containers are a type
of target-oriented speedup technique which involves com-
puting a 2D label for every edge in the graph. The labels
indicate whether the edge appears on an optimal path, from
its source node to a given target node.

JPS+BB works as follows: during an offline step an empty
bounding box is created for every edge in the graph. A
canonical best-first search, that combines Dijkstra’s well
known algorithm with diagonal-first pruning is then per-
formed (in turn or in parallel) from every traversable node
in the grid. Each time a search reaches a node with optimal
cost it adds that node to the bounding box of the first arc
appearing on the path to the node. Once computed, when
expanding a node the only successors generated are those
reached by an edge whose bounding box contains the target
node. A description of this algorithm appears in (Rabin and
Sturtevant 2016). In this work we use the same implementa-
tion as the original authors.

JPS+BB is highly effective in practice and improves per-
formance of JPS+ by up to one additional order of mag-
nitude (Rabin and Sturtevant 2016). Its main weakness is
that the time requirements of the preprocessing step grows
quadratically with the size of the map. Meanwhile its space
requirements are always linear in the size of the map. We
explore these issues further in our experimental evaluation.

Preprocessing the Grid
Our first contribution is a preprocessing improvement to
JPS+BB which allows us to only perform a Dijkstra search
from source nodes that are also jump points. Furthermore,
we show that it is not necessary to store bounding boxes for
every outgoing edge of each jump point but rather only those
edges which allow an incoming path to continue from the
source node in a way that is diagonal-first. On grids of practi-
cal interest (e.g. those drawn from real games) the number of
jump points is usually orders of magnitude smaller than the
total number of grid cells. This allows our new algorithm,
JPS+BB+, to complete its preprocessing using just a small
fraction of the total space and time required by JPS+BB.

The idea behind JPS+BB+ resembles that of TRANSIT
which stores global information merely in a small set of im-
portant states without loss of online efficiency (Bast, Funke,
and Matijević 2006). A main difference is that the set of tran-
sit nodes are determined algorithmically in road networks
while the set of jump points are determined by the topology
of the input grids.
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Figure 2: All the straight jump points and their cardinal travel
direction in the small map are marked as red nodes and gray ar-
rows in (a), respectively. There can be many diagonals from which
their associated cardinal moves produces straight nodes. Figure (b)
only shows the two marked as blue, which appear as successors of
(B0, R).

Definition 1. A straight jump point is a tuple (n,~c) com-
prising a grid cell n and a cardinal travel direction ~c such
that: (i) n−~c is a valid move; (ii) n+ ~c′ is a valid move; (iii)
~c′ and ~c are orthogonal; (iv) The path (n−~c)+ ~c′ is invalid.

Definition 2. A diagonal jump point is a tuple (n, ~d) where
n is a grid cell and ~d = ~c1 + ~c2 is a diagonal travel direction
such that n+ k1 ~c1 or n+ k2 ~c2 is a sequence of valid moves
that produces a straight jump point or the target, where k1
and k2 are positive.

Identifying jump points: JPS distinguishes two types of
jump points as definitions above indicate. Stated in simple
words, Definition 1 says that every corner point is also a
straight jump point location whereby Figure 2(a) recognizes
all the tuples of straight nodes in the given small map. Note
that a cell can correspond to more than one jump point such
as (C2, R) and (C2, U). Meanwhile Definition 2 says that
a diagonal jump point is any cell where a diagonal-first path
can turn to reach a straight jump point.

Using these descriptions we develop a simple procedure
to identify the set of all diagonal jump points. From each
traversable grid cell n, we “jump” in each outgoing direc-
tion ~v and we record, in a jump distance table, the distance
from n to the first straight or diagonal jump point in direc-
tion ~v. If no jump point exists we store instead the distance
from n to the first obstacle in direction ~v. The example in
Figure 2(b) briefly shows how these distances can help pin-
point the locations of the diagonal successors of a certain
straight jump point, where negative integers indicate the dis-
tances to obstacles. In that case, (D2, DR) and (G5, DR)
are two diagonal jump points associated with (B0, R).

The proposed algorithm is linear in the size of the map
provided we consult the jump distance table during recur-
sion. Specifically, the computation of jump distances guar-
antees to never visit a grid cell more than eight times: i.e.
once in each direction.

Space requirements are also linear in the size of the in-
put map: we store 8 distances per grid cell and one flag per
distance that indicates whether the node that will be reached
is a jump point or not. Our implementation uses 2 bytes per
label. We keep 15 bits for the distance value and one bit
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Figure 3: Given start A0 and target B5, (a) B0 has one bound-
ing box label per diagonal-first move. We mark each move and
box with the same color. Besides shaded nodes that B0 optimally
reaches via the edge the rectangle bounding box for the diagonal
move contains false positives; e.g. A0 − E0 and B1 − B2. (b)
Since that box contains the target, the search proceeds to the first
diagonal successor D2 where partial expansion is called to prune
irrelevant edges.

for the flag. This limits individual jumps to have at most
215 = 32, 768 steps: a value that is more than 10x larger
than any single dimension (i.e. width or height) of any grid
map in our benchmark set. For larger grids we could use
more byes per label or compute values recursively.

Computing bounding boxes: JPS+BB performs a
(Canonical) Dijkstra search from every unblocked cell.
We also invoke this algorithm but only from every straight
jump point and every diagonal jump point that appears as a
successor of at least one other jump point. The idea here is
to reduce the number of Dijkstra calls while still computing
enough labels to retain the speed advantages of JPS+BB.

After each Dijkstra search all outgoing edges of each
jump point are labelled with a bounding box. However, not
all edges are necessary. In particular if we consider the in-
coming directions of each jump point we may realise that
some edges will never be relaxed during search, except if
the current Dijkstra source is also the start node. Figure 3(a)
shows an example where only three edges from B0 fol-
low the diagonal-first ordering. We exploit this observation
to discard all unnecessary bounding boxes. The number of
bounding boxes is reduced by at most 1 for locations of
straight jump points and at most 5 for diagonals, respec-
tively.

Online Search
The online search of JPS+BB+ is based on JPS+(P): i.e. we
generate all straight jump point successors and we recur-
sively prune any diagonal jump points. There exist two im-
portant differences between our approach and JPS+BB: (1)
if the start node is not a jump point then there are no bound-
ing box labels available and we cannot prune any immediate
successors until the next expansion; (2) the branching factor
of any jump point expanded by JPS+BB is fixed and at most
5 while we can produce up to two straight successors each
time we “jump over” an intermediate diagonal jump point.
This can happen up to min(H,W ) times, where H and W
are short for the height and width of a given map. We will



Table 1: Preprocessing results. Column Dijk indicates the total number of Dijkstra calls (in millions), Time indicates the total
preprocessing time (in hours) and Mem indicates total space requirements for all bounding boxes (in Megabytes). The number
of maps in each set is given in the parenthesis. The best results under each metric are shown as bold numbers.

• StarCraft (75) DAO (156) Random (60) Room (30) Maze (60)
• Dijk Time Mem Dijk Time Mem Dijk Time Mem Dijk Time Mem Dijk Time Mem

JPS+BB 19.8M 99.0h 1174MB 3.3M 3.0h 192MB 10.7M 44.7h 483MB 7.2M 37.0h 418MB 12.5M 37.6h 625MB
JPS+BB+ 2.4M 11.6h 65MB 0.5M 0.5h 15MB 6.9M 30.0h 235MB 0.1M 0.6h 3MB 1.0M 2.9h 26MB

Table 2: Online performance as measured across all instances. Column Time indicates average time (in microseconds), Gen
measures average nodes generated, while Expa measures average nodes expanded. The total number of instances for each set
of maps is shown in parenthesis.

• StarCraft (198230) DAO (159465) Random (137780) Room (59550) Maze (627000)
• Time Gen Expa Time Gen Expa Time Gen Expa Time Gen Expa Time Gen Expa

JPS+BB 26.1 122.4 119.8 13.6 61.7 60.2 553.2 1369.6 1311.0 29.1 94.8 89.0 153.8 629.6 628.4
JPS+(P+BB) 48.1 155.3 112.8 25.4 77.0 61.1 953.6 1854.8 1684.6 28.4 84.0 72.2 123.2 508.0 506.4
JPS+BB+v1 39.8 145.9 135.7 18.9 70.9 67.4 619.9 1403.8 1344.1 30.8 98.9 92.9 148.4 630.0 628.9

JPS+BB+ 18.6 61.1 51.0 10.0 33.4 30.0 397.8 898.8 843.8 17.8 56.2 50.1 132.6 497.5 496.5

investigate how these differences impact performance in ex-
periments.

Partial Expansion: This section presents a partial expan-
sion strategy that improves the efficiency of online search.
Our idea exploits containers stored with diagonal moves ~d

as follows: If the bounding box of ~d contains the target then
we recursively scan along the diagonal generating succes-
sors as long as the bounding box of the associated cardinal
or diagonal move leading to the successor also contains the
target. Alternatively, if ~d does not contain the target we do
not recurse at all and thus generate zero successors.

Taking Figure 3(a) for instance, JPS+BB+ firstly discards
the two cardinal branches from B0 and proceeds diagonally
to D2 as JPS+BB does. As Figure 3(b) shows, the target is
no longer in the diagonal bounding box of D2. The search
can safely prunes edges that will never lead to the target and
turns to the promising successor D5. Because we also apply
intermediate pruning the method will not generate D2 but
jump ahead directly for an additional saving.

Our idea is similar to methods such as Enhanced Partial
Expansion A* (Goldenberg et al. 2014) and also avoids gen-
erating surplus nodes. A main difference is that we reason
with geometric containers instead of f -value bounds.

Experimental Setup
Our work builds directly on JPS+BB (Rabin and Sturtevant
2016) and we compare against that algorithm using C++
codes made freely available by the original authors1. We use
a binary heap as our priority queue and octile distance as the
heuristic function of A* algorithm. And each of four coor-
dinates of each bounding box is stored by 16 bits. In experi-
ments we compare the following methods:

• JPS+BB: the original work.

1https://github.com/SteveRabin/JPSPlusWithGoalBounding

• JPS+(P+BB), which is the combination of JPS+BB with
online intermediate pruning and involves no edge pruning
by container testing at diagonal jump points (Harabor and
Grastien 2014).

• JPS+BB+: our improved method which includes interme-
diate pruning, partial expansion and bounding box labels
that we store only at selected jump points and then only
for moves which are known to be diagonal-first.

• JPS+BB+v1: a variant of JPS+BB+ without partial expan-
sion.

We run experiments on a 3.60 GHz Intel Core i7-4790 CPU
with 16 GB of RAM. We select for testing a wide range of
maps from Sturtevant’s collection (Sturtevant 2012) which
are all available from https://movingai.com. We choose all
maps and run all scenarios from the following benchmark
sets: StarCraft and DAO (both drawn from real games), Ran-
dom, Room and Maze (all synthetic).

Results
Table 1 presents preprocessing results across all tested maps.
We show that JPS+BB+ calls Dijkstra search substantially
fewer times. Consequentially, this method saves orders of
magnitude in both computation time and space requirements
vs JPS+BB. Note that JPS+(P+BB) and JPS+BB+v1 share
the same preprocessing as JPS+BB and JPS+BB+, respec-
tively.

In Table 2 we give results for online performance. We no-
tice that for Room and Maze the addition of intermediate
pruning helps JPS+(P+BB) to have fewer operations and run
faster than JPS+BB. Meanwhile, it hinders rather than helps
this algorithm on StarCraft and DAO, and shows itself inef-
fective on Random. In synthetic domains such as rooms and
mazes, diagonal moves produce short recursions and few
surplus nodes (i.e. nodes generated but never expanded). In
these cases JPS+BB incurs extra overhead from constantly
evaluating diagonal jump points by generating and expand-
ing them. But on games maps diagonal moves produce long



recursions and the overhead from exploring those straight
successors without edge pruning in JPS+(P+BB) can be sub-
stantial.

Our proposed method possesses both of their online mer-
its with edge pruning but no operations at diagonal jump
points. This can easily explain that JPS+BB+ dominates
in all three indicators for almost all sets of maps. On
StarCraft, one of the most difficult of our chosen bench-
mark sets, JPS+BB+ generates less than half the nodes re-
quired by JPS+BB and runs about 30% faster. By contrast,
JPS+BB+v1 answers all the queries much slower. The com-
parison shows that the partial expansion strategy is an effec-
tive way of accelerating the search and serves to mitigate the
initial disadvantage from not storing bounding boxes with
the start node. The proposed algorithm reduces the runtime
indicator to a narrower range and its variance on query time
also gets smaller compared with JPS+BB.

Conclusions
This paper presents an improved algorithm JPS+BB+ which
improves the combination of JPS+ with Geometric Con-
tainers implemented as Bounding Boxes. To compute labels
JPS+BB+ only runs Dijkstra search from grid cells which
are jump points rather than all traversable cells. We also
never store labels for non-canonical grid moves. We show
this approach can save up to two orders of magnitude of ad-
ditional preprocessing time and additional space vs JPS+BB,
a previous attempt at combining these approaches.

Besides savings in preprocessing we introduce a simple
partial expansion strategy that further exploits stored labels
and which improves the performance of online search by up
to 30% on average.

Through the combination of these ideas our JPS+BB+
achieves a new state of the art for optimal pathfinding on
static grids. Future work could improve the combination
of JPS with other preprocessing-based speedup techniques
such as CPDs (Salvetti et al. 2018).
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