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Abstract
We give online and offline optimisation techniques to
improve the performance of Jump Point Search (JPS): a
recent and very effective symmetry-breaking algorithm
that speeds up pathfinding in computer games. First,
we give a new and more efficient procedure for online
symmetry breaking by manipulating “blocks” of nodes
at a single time rather than individual nodes. Second,
we give a new offline pre-processing technique that can
identify jump points apriori in order to further speed up
pathfinding search. Third, we enhance the pruning rules
of JPS, allowing it to ignore many nodes that must other-
wise be expanded. On three benchmark domains taken
from real computer games we show that our enhance-
ments can improve JPS performance by anywhere from
several factors to over one order of magnitude. We also
compare our approaches with SUB: a very recent state-
of-the-art offline pathfinding algorithm. We show that
our improvements are competitive with this approach
and often faster.

Introduction
Grid-based pathfinding is a problem that often appears
in application areas such as robotics and computer
games. Grids are popular with researchers because the
encoding is simple to understand and apply but the pro-
cess of finding optimal paths between arbitrary start-
target pairs can be surprisingly challenging. At least
one reason for this difficulty can be attributed to the
existence of symmetries: myriad in grid maps but less
common in other domains such as road networks. A
path is considered symmetric when its individual steps
(or actions) can be permuted in order to derive a new
and equivalent path that has identical cost. In the pres-
ence of symmetry classical algorithms such as A* will
waste much time looking at permutations of all shortest
paths: from the start node to each expanded node.

Jump Point Search (JPS) (Harabor and Grastien
2011) is a recent and very effective technique for iden-
tifying and eliminating path symmetries on-the-fly. JPS
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can be described as the combination of A* search with
two simple neighbour-pruning rules. When applied re-
cursively these rules can improve the performance of
optimal grid-based pathfinding by an order of magni-
tude and more – all without any pre-processing and
without the introduction of any memory overheads.

The efficiency of JPS depends on being able to
quickly scan many nodes from the underlying grid map
in order to identify jump points. On the one hand such
a procedure can typically save many unnecessary node
expansions. On the other hand the same operation pro-
ceeds in a step-by-step manner and it can scan the same
node multiple times during a single search. Consider
Table 1, where we give a comparative breakdown of
how JPS and A* spend their time during search. The
results are obtained by running a large set of standard
instances on three realistic game benchmarks that ap-
peared in the 2012 Grid-based Path Planning Competi-
tion. Observe that JPS spends∼90% of its time generat-
ing successors (cf. ∼40% for A*) instead of manipulat-
ing nodes on the open and closed lists – i.e. searching.

In this paper we propose a number of ideas to im-
prove the performance of Jump Point Search. We fo-
cus on: (i) more efficient online symmetry breaking
that reduces the time spent scanning the grid; (ii) pre-
computation strategies for breaking symmetries offline;
(iii) more effective online pruning strategies that avoid
expanding some jump points. We evaluate our ideas on
three realistic grid-based benchmarks and find that our
enhancements can improve the performance of Jump
Point Search by anywhere from several factors to over

A* JPS
M.Time G.Time M.Time G.Time

D. Age: Origins 58% 42% 14% 86%
D. Age 2 58% 42% 14% 86%
StarCraft 61% 39% 11% 89%

Table 1: A comparative breakdown of total search time on
three realistic video game benchmarks. M.Time is the time
spent manipulating nodes on open or closed. G.Time is the
time spent generating successors (i.e. scanning the grid).



one order of magnitude.

Related Work
Efficiently computing optimal paths is a topic of inter-
est in the literature of AI, Algorithmics, Game Devel-
opment and Robotics. We discuss a few recent results.

TRANSIT (Bast, Funke, and Matijevic 2006) and
Contraction Hierarchies (Geisberger et al. 2008) are
two highly successful algorithms that have appeared
in recent years. Both of these approaches operate on
similar principles: they employ pre-processing to iden-
tify nodes that are common to a great many short-
est paths. Pre-processed data is exploited during on-
line search to dramatically improve pathfinding perfor-
mance. Though very fast on road networks these al-
gorithms have been shown to be less performant when
applied to grids, especially those drawn from real com-
puter games; e.g. (Sturtevant and Geisberger 2010;
Antsfeld et al. 2012; Storandt 2013).

Swamps (Pochter et al. 2010) is an optimal pathfind-
ing technique that uses pre-processing to identify areas
of the map that do not need to be searched. A node is
added to a set called a swamp if visiting that node does
not yield any shorter path than could be found other-
wise. By narrowing the scope of search Swamps can
improve by several factors the performance of classi-
cal pathfinding algorithms such as A*. Such pruning
approaches are orthogonal to much of the work we de-
velop in this paper. We will revisit the connection in the
concluding section of this paper.

SUB (Uras, Koenig, and Hernàndez 2013) is a recent
and very fast technique for computing optimal paths
in grid-map domains. This algorithm works by pre-
computing a grid analogue of a visibility graph, called
a subgoal graph, which it stores and searches instead of
the original (much larger) grid. A further improvement
involves directly connecting pairs of nodes for which
the local heuristic is perfect (this operation is similar to
graph contraction (Geisberger et al. 2008) in that it has
the effect of pruning any intermediate nodes along the
way). To avoid a large growth in its branching-factor
SUB prunes other additional edges from the graph but
this latter step makes the algorithm sub-optimal in cer-
tain cases. We compare our work against two variants
of SUB in the empirical evaluation section of this paper.

Jump Point Search
Jump Point Search (JPS) is the combination of A*
search with simple pruning rules that, taken together
and applied recursively, can identify and eliminate
many path symmetries from an undirected and 8-
connected grid map. There are two sets of rules:
pruning rules and jumping rules.

Pruning Rules: Given a node x, reached via a
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Figure 1: When the move from p to x is straight (as in (a))
only one natural neighbour remains. When the move from p
to x is diagonal (as in (c)), three natural neighbours remain.
When obstacles are adjacent to x some neighbours become
forced; we illustrate this in for straight moves (q.v. (b)) and
for diagonal moves (q.v. (d)).

parent node p, we prune from the neighbours of x any
node n for which one of the following rules applies:

1. there exists a path π′ = 〈p, y, n〉 or simply π′ =
〈p, n〉 that is strictly shorter than the path π =
〈p, x, n〉;

2. there exists a path π′ = 〈p, y, n〉with the same length
as π = 〈p, x, n〉 but π′ has a diagonal move earlier
than π.
We illustrate these rules in Figure 1(a) and 1(c).

Observe that to test each rule we need to look only
at the neighbours of the current node x. Pruned
neighbours are marked in grey. Remaining neighbours,
marked white, are called the natural successors of node
x. In Figure 1(b) and 1(d) we show that obstacles can
modify the list of successors for x: when the alternative
path π′ = 〈p, y, n〉 is not valid, but π = 〈p, x, n〉 is, we
will refer to n as a forced successor of x.

Jumping Rules: JPS applies to each forced and
natural neighbour of the current node x a simple recur-
sive “jumping” procedure; the objective is to replace
each neighbour n with an alternative successor n′ that
is further away. Precise details are given in (Harabor
and Grastien 2011); we summarise the idea here using
a short example:
Example 1 In Figure 1(a) pruning reduces the number
of successors of x to a single node n = 5. JPS exploits
this property to immediately and recursively explore n.
If the recursion stops due to an obstacle that blocks fur-
ther progress (which is frequently the case), all nodes
on the failed path, including n, are ignored and nothing
is generated. Otherwise the recursion leads to a node
n′ which has a forced neighbour (or which is the goal).
JPS generates n′ as a successor of x; effectively allow-
ing the search to “jump” from x directly to n′ – with-
out adding to the open list any intermediate nodes from
along the way. In Figure 1(c) node x has three natural
neighbours: two straight and one diagonal. We recurse
over the diagonal neighbour only if both straight neigh-
bours produce failed paths. This ensures we do not miss
any potential turning points of the optimal path.
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Figure 2: A current search state (the grid is assumed larger
than the part presented). The red numbers show in which or-
der the traversability of the nodes is tested. The blue rectangle
represents the byte that is returned when we scan the grid to
read the value of location N = 〈2, 2〉.

By jumping, JPS is able to move quickly over the
map without inserting nodes in the A* open list. This
is doubly beneficial as (i) it reduces the number of op-
erations and (ii) it reduces the number of nodes in the
list, making each list operation cheaper. Notice that JPS
prunes nodes entirely online; the algorithm involves no
preprocessing and has no memory overhead.

Block-based Symmetry Breaking
In this section we will show how to apply the pruning
rules from Jump Point Search to many nodes at a single
time. Such block-based operations will allow us to scan
the grid much faster and dramatically improve the over-
all performance of pathfinding search. Our approach
requires only that we encode the grid as a matrix of bits
where each bit represents a single location and indicates
whether the associated node is traversable or not.

For a motivating example, consider the grid presented
in Figure 2 (this is supposed to be a small chunk of
a larger grid). The node currently being explored is
N = 〈2, 2〉 and its parent is P = 〈1, 1〉. At this
stage, the horizontal and vertical axes must be scanned
for jump points before another diagonal move is taken.
As it turns out, a jump point will be found at location
〈5, 2〉. When looking for a horizontal jump point on
row 2, Jump Point Search will scan the grid more or
less in the order given by the numbers in red, depend-
ing on the actual implementation. Each one of these
nodes will be individually tested and each test involves
reading a separate value from the grid.

We will exploit the fact that memory entries are or-
ganised into fixed-size lines of contiguous bytes. Thus,
when we scan the grid to read the value of location
N = 〈2, 2〉 we would like to be returned a byte BN that
contains other bit-values too, such as those for locations
up to 〈9, 2〉. In this case we have:

BN = [0, 0, 0, 0, 0, 1, 0, 0] (1)

Each zero valued bit in BN represents a traversable
node and each set bit represents an obstacle. In a similar
fashion, and using only two further memory operations,

we can read the values for all nodes immediately above
and immediately below those in byte BN :

B↑ = [0, 0, 0, 0, 0, 0, 0, 0] (2)
B↓ = [0, 0, 1, 1, 0, 0, 0, 0] (3)

Note that in practice we read several bytes at one time
and shift the returned value until the bit corresponding
to location 〈2, 2〉 is in the lowest position1.

Note also that our implementation uses 32-bit words
but for this discussion we will continue to use 8-bit
bytes as they are easier to work with.

When searching recursively along a given row or col-
umn there are three possible reasons that cause JPS to
stop: a forced neighbour is found in an adjacent row,
a dead-end is detected in the current row or the target
node is detected in the current row. We can easily test
for each of these conditions via simple operations on the
bytes BN , B↑ and B↓.
Detecting dead-ends: A dead-end exists in position
B[i] of byte B if B[i] = 0 and B[i + 1] = 1. We
can test for this in a variety of ways; CPU architectures
such as the Intel x86 family for example have the native
instruction ffs (find first set). The same instruction is
available as a built-in function of the GCC compiler.
When we apply this function to BN we find a dead-end
at position 4.
Detecting forced neighbours: A potential forced
neighbour exists in position i of byte B, or simply B[i],
if there is an obstacle at position B[i − 1] and no ob-
stacle at position B[i]. We test for this condition with
the following bitwise operation (assuming left-to-right
travel):

forced(B) = (B<<1) & !B (4)

When we apply this procedure toB↓ we find a potential
forced neighbour at bit position 4; forced(B↑) yields
no potential forced neighbours.

In order to minimise the number of branching instruc-
tions (important to prevent CPU stalling) we do not test
the individual results of operations: rather we combine
their results by way of bitwise disjunction into a single
byte BS (S for stop). For the example in Figure 2 we
have

BS = forced(B↑) | forced(B↓) | BN (5)
BS = [0, 0, 0, 0, 1, 1, 0, 0] (6)

Because BS 6= 0, we know that the search has to
stop. Using the ffs command we extract the position
of the first set bit in BS (call this bit bS) and compare it

1We will assume throughout this work that bytes are zero-
indexed and organised in little-endian format; i.e. the lowest
bit is always in the left-most position and the highest bit is
always in the right-most position. This means that when we
apply logical shift operators such as << and >> the individual
bits move in the opposite literal direction to the operator.
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Figure 3: (a) A jump point is computed in place of each grid neighbour of node N . (b) When jumping from N to S we may
cross the row or column of the target T (here, both). To avoid jumping over T we insert an intermediate successor J on the row or
column of T (whichever is closest to N ).

with the position of the first set bit in BN (call this bit
bN ). If bS < bN we have discovered a jump point at
location BN [bS − 1]; otherwise we have hit a dead-end.
Alternatively, if BS evaluates to zero there is no reason
to stop: we jump ahead 7 positions (not 8) and repeat
the procedure until termination.
Detecting the target node: To avoid jumping over
the target node we compare its position to the position
of the node where the block-based symmetry-breaking
procedure terminated – either due to finding a successor
or a reaching dead-end. If the target lies between these
two locations we generate it as any other jump point
successor.

Additional Considerations
The procedure we have described in our running exam-
ple is applicable in the case where JPS scans the grid
left-to-right. The modification for right-to-left scanning
is simple: we shift the current node into the most sig-
nificant position ofBN and replace ffs with the analo-
gous instruction msb. In the case of up-down travel we
have found it helpful to store a redundant copy of the
map that is rotated by 90 degrees. Other possibilities
also exist that do not incur an overhead: for example
the map may be stored as blocks of sizem×n that each
contain bits from several rows and columns. Such an
approach would also benefit diagonal travel (which in
our implementation remains step-by-step) but may re-
duce the step size during horizontal scanning.

Preprocessing
In the preceding section we have suggested a strategy
for enhancing the online performance of Jump Point
Search. In this section we give an offline technique

which can improve the algorithm further still. First, re-
call that Jump Point Search distinguishes between three
different kinds of nodes:

• Straight jump points. Reached by travelling in a car-
dinal direction these nodes have at least one forced
neighbour.

• Diagonal jump points. Reached by travelling in a di-
agonal direction, these nodes have (i) one or more
forced neighbours, or (ii) are intermediate turning
points from which a straight jump point or the target
can be reached.

• The target node. This is a special node which JPS
treats as a jump point.

We will precompute for every traversable node on the
map the first straight or diagonal jump point that can be
reached by travelling away from the node in each of the
eight possible cardinal or diagonal directions. During
this step we do not identify any jump points that depend
on a specific target node. However, as we will show,
these can be easily identified at run-time.

The precomputation is illustrated on Figure 3(a). The
left side of the figure shows the precomputed jump
points for node N = 〈4, 5〉. Nodes 1–3 are typical ex-
amples of straight or diagonal jump points. The others,
nodes 4–8, would normally be discarded by JPS be-
cause they lead to dead-ends; we will remember them
anyway but we distinguish them as sterile jump points
and never generate them (unless they lead to the target).

Consider now Figure3(b), where T is the target node.
Travelling South-West away from N , JPS would nor-
mally identify J as a diagonal jump point because it is
an intermediate turning point on the way to T . However
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J was not identified as a jump point during preprocess-
ing because T was unknown. Instead, the sterile jump
point S is recorded in the precomputed database. We
use the location of S to determine whether the jump
from N to S crosses the row or column of T (and
where) and then test whether T is reachable from that
location. This procedure leads us to identify and gen-
erate J as a diagonal jump point successor of N . We
apply the same intersection test more broadly – to all
successors of N . This is sufficient to guarantee both
completeness and optimality. We call this revised pre-
processing based algorithm JPS+.

Properties
JPS+ requires an offline pre-processing step that has
worst-case quadratic time complexity and linear space
requirements w.r.t the number of nodes in the grid. The
time bound is very loose: it arises only in the case where
the map is obstacle free and one diagonal jump can re-
sult in every node on the map being scanned. In most
cases only a small portion of the total map needs to be
scanned. Moreover, if we pre-compute using block-
based symmetry breaking the entire procedure com-
pletes very quickly. We will show that on our test ma-
chine (a midrange desktop circa 2010) pre-processing
never takes more than several hundred milliseconds,
even when the procedure is applied to large grid maps
containing millions of nodes.

Advantages and Disadvantages
The main advantage of JPS+ is speed: instead of scan-
ning the grid for jump points we can simply look up
the set of jump point successors of any given location
on the grid in constant time. On the other hand, pre-
processing has two disadvantages (i) jump points need
to be recomputed if the map changes (some local repair
seems enough) and (ii) it introduces a substantive mem-
ory overhead: we need to keep for each node 8 distinct
labels (one for each successor). In our implementation
we use two bytes per label. The first 15 bits indicate the
number of steps to reach the successor and the final bit
distinguishes the successor as sterile or not.

We can use less memory if we store labels for inter-
mediate locations instead of actual jump points: for ex-
ample using one byte per label we could jump up to 127
steps at one time. The disadvantage of this approach is
that more nodes may be expanded during search than
strictly necessary. A hybrid algorithm that combines
a single-byte database with a recursive jumping proce-
dure is another memory-efficient possibility.

Improved Pruning Rules
We have seen that JPS distinguishes between jump
points that have at least one forced neighbour and those
that have none. The former can be regarded as the grid
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Figure 4: We prune all intermediate jump points (here nodes
1, 4 and 6) and instead generate their immediate successors
(nodes 2, 3, 5 and 7) as children of the node from where initi-
ated the jump (i.e., S).

equivalent of a visibility point (Lozano-Pérez and Wes-
ley 1979): they are adjacent to at least one obstacle, and
they are on at least one optimal path between two neigh-
bours that are not mutually observable. If JPS prunes
any of these nodes it is entirely possible that it will not
return an optimal path. The second type of jump points
are not adjacent to any obstacle. They are simply in-
termediate locations where the optimal path can change
direction in order to reach the first type of jump point or
the goal.

We argue that intermediate jump points can be safely
pruned without affecting the optimality of Jump Point
Search. Each intermediate jump point has at most three
successors: the first is a jump point that is reachable
horizontally, the second is a jump point that is reachable
vertically and the third is the next intermediate jump
point that can be reached without changing direction.
When we prune an intermediate jump point we store
its successors in a list and generate them in its stead.
We apply this procedure recursively to any successors
which are also intermediate jump points and terminate
only when a dead-end is reached. Figure 4 shows an
example.

To see that our strategy is optimality preserving we
need only observe that for each intermediate jump point
that is pruned the g-value of any of its successors re-
mains unchanged. We simply generate these nodes ear-
lier without first expanding any intermediary location.
Once we have pruned such a node, the parent of each
newly orphaned successor becomes the starting location
from where we initiated the jump. To extract a concrete
path we simply walk from one jump point on the final
path to the next in a diagonal-first way: i.e. we follow
the octile heuristic but take all diagonal steps as early as
possible. Such a path is guaranteed to be valid and thus
obstacle-free.

Our pruning strategy is applied entirely online; it
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StarCraft Dragon Age: Origins Dragon Age 2
Time (µs) Branches Time (µs) Branches Time (µs) Branches

JPS 2011 19.89 3.76 6.36 3.31 4.54 3.25
JPS (B) 1.85 3.76 0.93 3.31 0.85 3.25
JPS (B+P) 7.10 22.72 1.96 8.11 1.54 6.62
JPS+ 0.38 3.76 0.21 3.31 0.20 3.25
JPS+ (P) 1.56 22.72 0.52 8.11 0.46 6.62

Table 2: A comparison of the average time required to ex-
pand one million random starting nodes from each map in our
three benchmark sets. We aggregate the figures by benchmark
and give results for the average time to expand a single node,
the average standard deviation and the average branching fac-
tor. Times are given in microseconds.

does not require any special data structures and does not
store nor compute any additional information. It can be
combined with other suggestions discussed in the cur-
rent work and it allows us to jump further than we oth-
erwise might. The cost is up to two additional open
list operations for each node that we prune. Neverthe-
less, we will show empirically that pruning intermediate
nodes from the search tree improves the performance of
Jump Point Search.

Experimental Setup
We implemented Jump Point Search and a number of
variants as described in this this paper. All source code
is written from scratch in C++. For all our algorithms
we have applied a number of simple optimisations that
help to effectively stride through memory and reduce
the effect of cache misses. This means that (i) we store
the input map as a vector of bits, one bit for each node;
(ii) we store the map twice, once in row major order
and once in column major order; (iii) we pre-allocate
memory in 256KB chunks.

We run experiments on a 2010 iMac running OSX
10.6.4. Our machine has a 2.93GHz Intel Core 2 Duo
processor with 6MB of L2 cache and 4GB of RAM.
For test data we selected three benchmark problem sets
taken from real video games:
• Dragon Age: Origins; 44,414 instances across 27

grids of sizes ranging 665 to 1.39M nodes.
• Dragon Age 2; 68,150 instances across 67 grids of

sizes ranging 1369 to 593K nodes.
• StarCraft; 29,970 instances across 11 grids of sizes

ranging 262K to 786K nodes.
Instances are sampled from across all possible problem
lengths on each map. All have appeared in the 2012
Grid-based Path Planning Competition.

In keeping with the rules of the competition we disal-
low diagonal corner-cutting transitions in all our experi-
ments. This change requires a slight modification to the
JPS algorithm. Principally it means that we no longer
test for forced neighbours when jumping diagonally.
Jumping straight is also simplified. In the terminolgy
of our block-based jumping rules this change means
we stop at location BN [bS ] rather than BN [bS − 1].

These modifications do not affect the optimality or cor-
rectness of the algorithm. The argument is identical
to the one in (Harabor and Grastien 2011). Source
codes for algorithms developed in this paper are avail-
able from http://ddh.googlecode.com.

Comparison with JPS 2011
We first analyse the impact on JPS search perfor-
mance for various combinations of our optimisation
techniques: JPS (B), which adds block-based jumping,
JPS (B + P) which combines block-based jumping with
improved pruning, JPS+ which adds pre-processing
and JPS+ (P) which combines pre-processing with im-
proved pruning. To avoid confusion we will denote the
original algorithm as JPS 2011.

We have previously observed that the bottleneck of
the JPS 2011 algorithm is individual node expansion
operations. In Table 2 we give results for the average
time required to expand one million random starting
nodes from each input map in each benchmark set. We
find that block-based jumping and pre-processing jump
points each improve average times by one and two or-
ders of magnitude respectively vs. JPS 2011. Pruning
intermediate jump points from the search tree increases
the average branching factor by several times but the
time-per-expansion is still much better.

In Figure 5 we give a summary of search perfor-
mance, in terms of time and node expansions, for all
GPPC instances on each of our three benchmark sets.
In each case and for each metric we consider relative
improvement vs. JPS 2011. We show the spread of re-
sults after having assigned all test instances into buckets
of similar length. We observe that any of our alternative
approaches is strictly faster than the original. Moreover,
JPS (B) and JPS (B + P) have all the same advantages
as JPS 2011: they are fast, optimal, online and require,
in principle at least, no extra memory vs. JPS 2011 (re-
call that in practice we store a rotated copy of map to
improve memory access patterns). A summary of pre-

Database Size (MB) Prep Time (seconds)
Algo Min Q1 Med Q3 Max Min Q1 Med Q3 Max

Dragon Age: Origins
JPS+ 0.02 0.08 1.15 5.76 21.65 0.00 0.00 0.02 0.17 0.47
SUB-S 0.00 0.02 0.32 1.64 5.92 0.00 0.00 0.00 0.01 0.04
SUB-TL 0.00 0.02 0.32 1.58 5.84 0.00 0.00 0.02 0.25 1.05

Dragon Age 2
JPS+ 0.03 0.54 1.74 4.16 9.26 0.00 0.01 0.04 0.09 0.20
SUB-S 0.01 0.15 0.49 1.13 2.55 0.00 0.00 0.00 0.01 0.01
SUB-TL 0.01 0.15 0.48 1.12 2.49 0.00 0.01 0.02 0.05 0.76

StarCraft
JPS+ 4.14 4.14 9.24 9.24 12.28 0.18 0.27 0.43 0.73 0.85
SUB-S 1.22 1.33 2.98 3.18 5.25 0.01 0.01 0.03 0.04 0.07
SUB-TL 1.18 1.25 2.79 2.87 4.20 0.27 1.14 2.84 9.39 23.77

Table 3: Preprocessing results for JPS+ and the two variants
of SUB that we compare against. We present figures for the
size of the resultant database (in MB) and the amount of pre-
computation time needed (in seconds). Columns Q1 and Q3
indicate values for the first and third quartile of each data set.
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Figure 5: We measure the relative performance (or improvement factor) of each of our new JPS variants against the original. We
consider two metrics: nodes expanded and search time. An improvement factor of 2 for search time means twice as fast; for node
expansions it means half as many nodes expanded. Higher values are always better.

processing requirements is given in Table 3. Note that
JPS+ and JPS+ (P) have the same requirements and are
not listed separately.

Comparison with SUB

SUB (Uras, Koenig, and Hernàndez 2013) is a recent
pathfinding technique from the literature. As one of
the joint winners of the 2012 Grid-based Path Planning
Competition (GPPC) SUB has been shown to be very
fast and is considered the current state of the art. We
compare against two variants described by the original
authors: SUB-S (S for Simple) and SUB-TL (TL for
Two Level). The former is guaranteed optimal while the
latter is not. To evaluate SUB-S and SUB-TL we used
the authors’ original C++ implementation which we ob-
tained from http://gppc-2012.googlecode.com/
svn/trunk/entries/SUB-a/.

Table 3 compares the pre-processing requirements of
SUB-S and SUB-TL with JPS+ (JPS+ (P) has identi-
cal requirements and is not shown). We observe that
both JPS+ and SUB are able to pre-process most maps
in well under a second and in most cases using less than
10MB of memory. A small number of notable excep-
tions arise for both JPS+ and SUB-TL. In Figure 6 we
compare our four JPS variants with SUB-S and SUB-
TL across all game map instances from the 2012 GPPC.
We find that JPS (B) and JPS (B + P) are both compet-
itive with, and often faster than, SUB-S. Meanwhile,
JPS+ (P) appears competitive with SUB-TL for a large
set of instances. Across our three benchmarks, DA:O,
DA2 and SC, we measured an improvement for JPS (B
+ P) vs. SUB-S in 92%, 84% and 89% of tested in-
stances respectively. For JPS+ (P) vs. SUB-TL we mea-
sured an improvement in 43%, 77% and 68% of tested
instances respectively.

Discussion
The results demonstrate the superiority of the ap-
proaches presented in this paper. In JPS (B) and JPS (B
+ P) we have improved the performance of JPS 2011 by
several factors all while retaining the same advantages
inherent to the original algorithm: completeness, opti-
mality and little-to-no memory overhead. Such results
are remarkable as JPS 2011 has itself been shown to
improve the performance of classical search algorithms
such as A* by up to one order of magnitude and some-
times more.

We have shown with JPS+ and JPS+ (P) that further
improvements are also possible. In our experiments we
employ an offline pre-processing step together with a
small amount of memory (10MB or less in most cases)
and identify apriori all jump point successors of each
grid node. The main advantage is performance: JPS+
and JPS+ (P) can improve the search times of JPS 2011
by up to one order of magnitude. The main disad-
vantage is that if the map changes the pre-processed
database needs to be re-computed. We have shown that
each such pre-computation can be performed very fast
– usually requiring only tens or hundreds of millisec-
onds. Moreover the pre-computation can be easily par-
allelised over several time slices with JPS (B + P) em-
ployed as a fallback algorithm in the interim.

We have compared our JPS-based approaches against
two variants of SUB (Uras, Koenig, and Hernàndez
2013). The first variant, SUB-S guarantees optimal-
ity; the second, SUB-TL, does not. We find that across
most benchmark instances JPS (B) and JPS (B + P) are
not only competitive with but faster than SUB-S. When
we compare JPS+ (P) and SUB-TL we find the two
algorithms often have complementary strengths: JPS+
(P) always has low pre-processing requirements, always
finds the optimal path and is faster on a majority class of
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Figure 6: We compare the raw search time performance of our improved JPS variants (both online and offline) with two recent
and very performant algorithms: simple subgoal graphs (SUB-S) and two-level subgoal graphs with local edge pruning (SUB-TL).
All JPS variants and SUB-S are provably optimal. SUB-TL is not.

tested instances; SUB-TL has low space requirements
and quickly finds optimal or near-optimal solutions to a
large class of remaining instances.

Conclusion
We study several techniques for improving Jump Point
Search (JPS). The first improvement is motivated by the
observation that JPS spends a majority of its time scan-
ning the grid for successors rather than manipulating
nodes from the open and closed list (i.e., searching).
We give a new procedure to detect jump points more
efficiently by considering sets of nodes from the grid at
one time (cf. one at a time). The second improvement
is motivated by the observation that most jump points
are goal-independent. We give a new pre-processing
strategy which computes and stores such jump points
for every node on the map. Our third improvement is
motivated by the observation that some jump points are
simply intermediary locations on the grid. We give a
new pruning strategy that avoids expanding such nodes.

There are several interesting directions for further
work. One possibility is stronger pruning rules that will
allow us to jump over some of the remaining nodes in
the graph. For example: we might consider pruning a
node n if all of its successors have an f -value that is
not larger than f(n). A stronger variant of this idea is
to keep jumping as long as we are heading in the same
direction as when we reached n — or in a new direc-
tion which is a component of the one used to reach n. It
is likely that this procedure will increase the branching
factor at n but we posit that fewer node expansions will
be required overall because we do not need to stop each
time the path turns due to an obstacle.

Combinations of JPS with existing grid-based
speedup techniques appears to be another fruitful di-
rection for further research. A number of well-known

speedup techniques, both optimal and sub-optimal,
work by limiting the scope of grid search to a cor-
ridor of nodes relevant for the instance at hand; e.g.
Swamps (Pochter et al. 2010), HPA* (Botea, Müller,
and Schaeffer 2004) or any number of pruning-based
heuristics e.g. (Björnsson and Halldórsson 2006; Gold-
enberg et al. 2010). JPS can be trivially combined with
such approaches to further speed up search.

One strength of the JPS family is that it performs
very well even online. We have shown however that
pre-computed jump points accelerate significantly the
search. It is possible to combine both approaches, by
populating a database with jump points as they are dis-
covered online. We want to apply this feature in dy-
namic environments where obstacles appear or disap-
pear, immediately rendering any pre-processed infor-
mation obsolete.
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