
Path Symmetries in Undirected Uniform-Cost Grids

Daniel Harabor and Adi Botea and Philip Kilby
NICTA and The Australian National University

Email: firstname.lastname@nicta.com.au

Abstract

We explore a symmetry-based reformulation technique which
can speed up optimal pathfinding on undirected uniform-cost
grid maps by over 30 times. Our offline approach decom-
poses grid maps into a set of empty rectangles, removing
from each all interior nodes and possibly some from along the
perimeter. We then add macro-edges between selected pairs
of remaining perimeter nodes to facilitate provably optimal
traversal through each rectangle. To further speed up search,
we also develop a novel online pruning technique. Our al-
gorithm is fast, memory efficient and retains both optimality
and completeness during search.

Introduction
Pathfinding on undirected uniform-cost grid maps com-
monly appears in areas such as robotics (Lee and Yu
2009), artificial intelligence (Wang and Botea 2009) and
video games (Davis 2000; Sturtevant and Geisberger
2010). To solve problems quickly practitioners usually ap-
ply hierarchical decomposition techniques such as HPA*
(Botea, Müller, and Schaeffer 2004; Sturtevant and Geis-
berger 2010) or develop more accurate heuristics to guide
search (Björnsson and Halldórsson 2006; Sturtevant et al.
2009; Goldenberg et al. 2010). Each of these has disad-
vantages: either the returned solutions are not guaranteed
optimal or a substantial memory overhead is incurred.

In this paper we present Rectangular Symmetry Re-
duction (RSR): a graph pruning algorithm for undirected
uniform-cost grid maps which is fast, memory efficient, op-
timality preserving and which can, in some cases, eliminate
entirely the need to search. The central idea that we will ex-
plore involves identifying and eliminating path symmetries
from the search space. Along the way we generalise a sim-
ilar pruning method proposed in (Harabor and Botea 2010),
which is limited to 4-connected uniform-cost grid maps.

When compared to related methods from the literature we
find RSR has complementary strengths. We identify classes
of instances where RSR is clearly the better choice and show
that it can often dominate convincingly across a variety of
synthetic and realistic benchmarks.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Related Work
In the presence of symmetry, search algorithms often waste
time evaluating many equivalent states and make little real
progress toward the goal. The problem of how to deal with
symmetry has received significant attention in other parts of
the literature (e.g. (Rossi, Beek, and Walsh 2006)) but few
studies focus on symmetry in pathfinding domains, such as
grid maps. We are only aware of Empty Rectangular Rooms
(Harabor and Botea 2010): an offline symmetry-breaking
technique limited to 4-connected uniform-cost grid map; the
connection with RSR is discussed in the next section.

The dead-end heuristic (Björnsson and Halldórsson 2006)
and Swamps (Pochter et al. 2010) are two closely-related
pruning techniques that identify areas in the search space not
relevant for reaching the goal. This is a similar yet comple-
mentary goal to RSR, which tries to reduce the search effort
involved in exploring any given area.

The gateway heuristic (Björnsson and Halldórsson 2006)
and the portal heuristic (Goldenberg et al. 2010) are two
typical memory-based techniques for optimal pathfinding on
grids. The main idea is to reduce the number of A* node ex-
pansions by improving the accuracy of cost-to-go estimates
during search. The portal heuristic also identifies, online,
areas not relevant to the pathfinding instance at hand.

Contraction Hierarchies (Geisberger et al. 2008) is
a method for very fast optimal pathfinding on road net-
works. Based on a combination of Dijkstra’s algorithm and
memory-intensive abstractions, this approach relies on the
existence of “highway edges” that appear on most shortest
paths between nodes. Largely orthogonal to RSR, there is
little work applying these ideas to searching on grid maps.
One recent result (Sturtevant and Geisberger 2010) suggests
they are less effective when the underlying graph contains a
high degree of path symmetry.

Rectangular Symmetry Reduction
In the AI literature a path in a graph is usually written as:
〈v0, . . . , vn〉. Here v0 is the initial (or start) node, vn is the
target (or goal) node and each pair of adjacent nodes repre-
sents an edge in the graph. In the context of grid maps, it is
sometimes helpful to equivalently describe a path as an or-
dered sequence of actions 〈 ~d0, . . . , ~dn〉 where each action ~di
is a vector representing a direction of travel. When executed

by an agent, the effect of each action is to move the agent
from the node it currently occupies on the grid (initially v0)
to one of the eight immediately neighbouring nodes. The
last action results in the agent occupying the target node vn.
Using this formulation, a path is valid if no action results in
the agent moving to a location which is an obstacle.

Definition 1. Two valid paths π1 and π2 are symmetric if
they share the same start and goal node and one can be de-
rived from the other by swapping the order of the actions.

To identify and eliminate path symmetries from the grid
we will employ the high level strategy in Algorithm 1.

Algorithm 1 Graph reduction based on empty rectangles
Require: A grid map

1. Decompose the grid map into a series of disjoint
obstacle-free rectangles; e.g. as in (Harabor and Botea
2010). The size and placement of rectangles can vary,
depending on the positions of obstacles.

2. Prune all tiles from the interior of each rectangle R and
possibly some from the perimeter (border).

3. Add to each rectangle R a series of macro edges be-
tween selected pairs of tiles from the perimeter. The
cost of each edge is equal to the Octile (or Manhattan,
on 4-connected grids) distance between endpoints.

4. During search, temporarily re-insert tiles back into the
map to handle cases where the start or goal is a location
which has been previously pruned.

RSR is similar to 4ERR (Harabor and Botea 2010), a
symmetry breaking algorithm limited to 4-connected grid
maps. The main differences are: (i) we generalise 4ERR to
8-connected grid maps (ii) we give a stronger offline pruning
operator to eliminate more nodes from the grid (iii) we give
a new online pruning operator that further speeds up search.

Optimal Travel via Macro-Edges
After interior nodes are eliminated, macro-edges have to be
added between perimeter nodes to ensure rectangles are tra-
versed optimally. We will describe a strategy that adds only
non-dominated macro edges; i.e. edges whose lengths are
strictly less than the length of any alternative path between
the same pair of nodes. There are three cases to discuss. In
each case the length of each added macro-edge is equal to
the heuristic (or Octile) distance between its two endpoints.

Case 1: nodes on the same side of the perimeter are con-
nected just as in the original grid. Case 2: nodes on orthogo-
nal sides of the perimeter are connected iff the shortest path
between them is a diagonal (45-degree) line; this is illus-
trated in Figure 1 (a). Case 3: nodes on opposite sides of the
perimeter. For each such node we generate a “fan” of neigh-
bours from the opposite side; this is shown in Figure 1 (b).
Starting from a node such as t1 we step to the closest neigh-
bour from the opposite side and extend the fan away from
the middle, adding each node we encounter. The last node
on either side of the fan is placed diagonally, at 45 degrees,
from t1 (such as t2) or located in the corner of the perimeter

Figure 1: (a) Macro edges between nodes on orthogonal
sides of an empty rectangle. (b) Each node on the perimeter
is connected to a set of nodes on the opposite side.

(whichever is encountered first). Other nodes, such as t3,
can be reached optimally via the path 〈t1, t2, . . . , t3〉.
Lemma 1. Let R be an empty rectangle in an 8-connected
grid map. Let m and n be two perimeter locations. Then,
m and n can be connected optimally through a path that
contains only non-dominated macro-edges.

Proof. : We split the proof over the 3 cases discussed earlier.
In the first case we walk along the perimeter from m to n;
the optimality of this path is immediate. In the second and
third case the two nodes can be connected through an opti-
mal path that has one diagonal macro-edge (at one end of
the path) and zero or more straight macro-edges. See again
the example of travelling from t1 to t3 in Figure 1 (b).

Node Insertion: When the start or goal is located in the
interior of an empty rectangle we will temporarily re-insert
them into the graph for the duration of a search. If the start
and goal are from the same room no insertion is necessary;
an optimal path is trivially available. Otherwise, we add
four “fans” (collections) of macro edges. Each fan connects
the start (goal) node to a set of nodes on one side of the
rectangle’s perimeter. Fans are built as shown earlier. To
prove optimality we run the argument given for Case 3 of
Lemma 1, substituting m for the newly inserted node.

Theorem 1. For every optimal path π on an original grid,
there exists an optimal path π′ on the reformulated grid such
that π and π′ have the same cost.

Proof. Consider a rectangle R that is crossed by an optimal
path π in the original grid. Letm and n be the two perimeter
points along π. According to Lemma 1, there is a way to
connect m and n optimally in the modified graph. Thus,
we replace the original path segment 〈m, . . . , n〉 in π with a
cost-wise equivalent from the modified grid. The case when
m (or n) is the start or goal node is addressed similarly. By
performing such a replacement for all rectangles intersected
by π, we obtain a path π′ that satisfies the desired properties.

Reducing The Branching Factor Further
In this section we discuss an offline perimeter pruning tech-
nique and an online branching factor reduction strategy.
Both retain solution optimality (proofs omitted).
Perimeter Reduction: To speed up search we will prune all
perimeter nodes which have no neighbours in any adjacent
rectangle. To preserve optimality, we connect the neigh-
bours of each pruned node directly to each other. The weight

Figure 2: (a) We prune all (dark grey) nodes which have
no neighbours in any adjacent rectangle (left). Remaining
nodes (right) are then connected directly. (b) Assume t1 is
the parent of t2. When t2 is expanded, we do not gener-
ate neighbors from the opposite side. These can be reached
from t1 via a shorter or equal-length path.

of each new edge is equal to the octile distance between the
two neighbours. Figure 2 (a) shows an example.
Online Node Pruning: When expanding a node during
search we observe that if the current node, and its parent,
belong to the same rectangle then it is not necessary to con-
sider any successors from the opposite side of the rectan-
gle. Figure 2 (Right) shows an example of such a situation.
When the current node has no parent, or the parent belongs
to a different rectangle, we process all its successors.

Memory Requirements
RSR requires a memory overhead which is linear in the size
of the search graph: i.e. O(|V |). In our implementation
we stored the id of the parent rectangle for each node in the
original grid. We also stored, for each identified rectangle,
its height, width and the coordinates of its origin in the grid.
Further overheads, such as storing the set of macro-edges
for each perimeter node, can be avoided by exploiting the
simple geometric nature of empty rectangles. During node
expansion we calculate, on-the-fly and in constant time, the
exact position of the two nodes at the edge of each “fan”
of neighbours from the opposite side of the perimeter. We
can then simply travel along the perimeter, from one end
of the fan to the other, and generate each non-pruned node
we encounter. Other neighbours, from the same side of the
perimeter as the current node, or an orthogonal side, can be
similarly identified on-the-fly and in constant time.

Experimental Setup
We evaluate RSR on three benchmarks from the University
of Alberta’s freely available pathfinding library Hierarchical
Open Graph (HOG): Adaptive Depth is a set of 12 syn-
thetic maps of size 100×100. Baldur’s Gate is a set of
120 maps from BioWare’s popular roleplaying game Bal-
dur’s Gate II: Shadows of Amn. They range in size from
50× 50 to 320× 320 and often appear as a standard bench-
mark in the literature (Björnsson and Halldórsson 2006;
Harabor and Botea 2010; Pochter et al. 2010). Rooms
is a set of 300 maps of size 256×256, each divided into
small rectangular areas (7 × 7). Rooms has previously ap-
peared in (Sturtevant et al. 2009; Pochter et al. 2010;
Goldenberg et al. 2010).

We used two copies each map: one in which diagonal
transitions are allowed and another in which they are not.

Adaptive Depth Baldur’s Gate Rooms
4ERR 3.05 2.18 2.11
4ERR+PR 4.24 2.47 17.81
4ERR+OP 3.66 2.50 2.67
RSR 4.89 2.78 18.19

8-connected Maps
Swamps 1.60 2.91 4.66
RSR 3.94 2.18 7.91

Scaled-up Maps (8-connected)
Swamps 2.04 4.03 7.22
RSR 9.38 4.98 30.99

Table 1: Avg. A* search time speedup on each benchmark.

For each map we generated 100 valid problem instances,
checking that every instance could be solved both with and
without the use of diagonal transitions. Our test machine
had a 2.93GHz Intel Core 2 Duo processor, 4GB RAM and
ran OSX 10.6.2. Our implementation of A* is based on one
provided in HOG, which we adapted to facilitate our online
node pruning enhancement.

Results
To evaluate RSR we use a generic implementation of A* and
discuss performance in terms of search time speedup. That
is, the relative improvement to the average time A* needs to
solve an instance when running on a pruned vs. unpruned
grid. For example, a speedup of 2.0 is twice as fast (higher
is better). Note that on approximately 2% of all instances
the start and goal are located in the same rectangle and RSR
computes the optimal solution without search. We exclude
these instances from our results on the basis that they are
outliers, even though RSR solves them in constant time.

Pre-processing Times: RSR took very little time to pre-
process each map from our three benchmark sets. Adaptive
Depth required 0.1 seconds per map on average; Rooms and
Baldur’s Gate required 0.39 and 0.65 seconds respectively.

Comparison to 4ERR: We now compare the perfor-
mance of RSR against the 4ERR (Harabor and Botea 2010)
symmetry-breaking algorithm. Here we restrict our atten-
tion to 4-connected maps. To assess the individual impact
of both perimeter reduction (PR) and online node pruning
(OP) we also develop and compare two variant algorithms:
4ERR+PR and 4ERR+OP. Table 1 (rows 1-4) presents our
main result. RSR dominates convincingly across all in-
stances allowing us to conclude it is the better choice on
4-connected maps. Of the variants, 4ERR+PR yields the
biggest improvement, speeding up A* by up to 20 times.
4ERR+OP compares well on Adaptive Depth and Baldur’s
Gate but is of little benefit on Rooms where perimeter prun-
ing has already reduced the branching factor.

Comparison to Swamps: Next, we compare RSR with
Swamps (Pochter et al. 2010). We used the authors’ source
code, including their own implementation of A*, and ran all
experiments using their recommended parameters: a swamp
seed radius of 6 and “no change limit” of 2. Table 1 (rows
5-6) gives the main result on the 8-connected variants of

Algorithm Extra Memory Baldur’s Gate Rooms
PH-e 2|V | 3.16 11.9
PH-e 8|V | 3.07 17.54
RSR |V | 2.8 18.2

Table 2: Avg. A* search time speedup: RSR vs PH-e. RSR
figures are across all maps on each benchmark. PH-e figures
are for a small subset selected by its authors (1 of 120 from
Baldur’s Gate and 5 of 300 from Rooms).

our three benchmarks. On Adaptive Depth and Rooms,
where the terrain can be naturally decomposed into rectan-
gles, RSR achieves higher speedups and is shown consis-
tently better than Swamps. On Baldur’s Gate, where this is
not the case, Swamps-based pruning is more effective.

To measure the effect that larger open areas have on
search time, we scaled every map in each benchmark by a
factor of 3. We then generated 100 new instances per map.
Table 1 (rows 7-8) shows the results. The overall gain for
Swamps is very small while RSR shows dramatic improve-
ment. This is not surprising: symmetry reduction quickly
explores large areas that must be searched while Swamps-
pruning avoids areas that do not need to be searched. Since
the two ideas are orthogonal, a natural extension would be
to combine them: first, apply symmetry reduction to a grid;
then, apply a Swamps-based decomposition to the resultant
graph.

Comparison to Portal Heuristic: Table 2 compares RSR
against published results for PH-e: the enhanced Portal
Heuristic algorithm (Goldenberg et al. 2010). As in that
work we focus on 4-connected variants of Baldur’s Gate and
Rooms. PH-e seems to perform well when it can decom-
pose the map into areas of similar size with few transitionary
nodes. Smaller is better but requires more memory. Coarser
decompositions require less memory but paths take longer to
refine. By contrast, RSR performs well when it can decom-
pose the map into (ideally large) rectangles with few perime-
ter nodes. On Rooms, both decomposition approaches are
highly effective. On Baldur’s Gate both are comparatively
less effective. Notice however that PH-e requires up to 7
times more memory than RSR to achieve similar results.
As with Swamps, we believe PH-e is entirely orthogonal to
RSR: e.g. it could be used to guide search on a map pruned
by RSR. Alternatively, symmetry elimination could be used
to speed up pathfinding during PH-e’s refinement phase.

Conclusion
We introduce Rectangular Symmetry Reduction (RSR), a
new symmetry-breaking algorithm applicable to pathfinding
on undirected uniform-cost grid maps. RSR is fast, mem-
ory efficient, optimality preserving and can, in some cases,
eliminate entirely the need to search. After symmetry elim-
ination A* can search some grids over 30 times faster.

Compared to the 4ERR (Harabor and Botea 2010) prun-
ing algorithm, on which it is based, RSR’s performance
dominates convincingly. We also show that RSR is com-
plementary to and often faster than Swamps-based prun-

ing (Pochter et al. 2010). We find that Swamps are more
useful on maps with small open areas while RSR becomes
more effective as larger open areas are available on a map.
When compared to the enhanced Portal Heuristic (Golden-
berg et al. 2010), we find that RSR has similar or improved
performance but requires up to 7 times less memory. As with
Swamps, this method can also be combined with RSR.

An interesting direction for future work is applying RSR
in settings involving dynamic environments: for example
real-time strategy games where existing obstacles may be
destroyed or new ones introduced. Another interesting topic
is combining RSR with Swamps or the Portal Heuristic.

Acknowledgements
We would like to thank Alban Grastien and Patrik Haslum
for providing feedback on early drafts of this work. We also
thank Ariel Felner and Meir Goldenberg for providing us
with assistance in comparing RSR with their enhanced Por-
tal Heuristic algorithm.

NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program.

References
Björnsson, Y., and Halldórsson, K. 2006. Improved heuris-
tics for optimal path-finding on game maps. In AIIDE, 9–14.
Botea, A.; Müller, M.; and Schaeffer, J. 2004. Near optimal
hierarchical path-finding. J. Game Dev. 1(1):7–28.
Davis, I. L. 2000. Warp speed: Path planning for Star Trek
Armada. In AAAI Spring Symposium (AIIDE), 18–21.
Geisberger, R.; Sanders, P.; Schultes, D.; and Delling, D.
2008. Contraction hierarchies: Faster and simpler hierarchi-
cal routing in road networks. In WEA, 319–333.
Goldenberg, M.; Felner, A.; Sturtevant, N.; and Schaeffer, J.
2010. Portal-based true-distance heuristics for path finding.
In SoCS.
Harabor, D., and Botea, A. 2010. Breaking path symmetries
in 4-connected grid maps. In AIIDE, 33–38.
Lee, J.-Y., and Yu, W. 2009. A coarse-to-fine approach for
fast path finding for mobile robots. In IROS, 5414 –5419.
Pochter, N.; Zohar, A.; Rosenschein, J. S.; and Felner, A.
2010. Search space reduction using swamp hierarchies. In
AAAI.
Rossi, F.; Beek, P. v.; and Walsh, T. 2006. Handbook of
Constraint Programming. New York, NY, USA: Elsevier
Science Inc.
Sturtevant, N. R., and Geisberger, R. 2010. A comparison of
high-level approaches for speeding pathfinding. In AIIDE,
76–82.
Sturtevant, N. R.; Felner, A.; Barrer, M.; Schaeffer, J.; and
Burch, N. 2009. Memory-based heuristics for explicit state
spaces. In IJCAI, 609–614.
Wang, K.-H. C., and Botea, A. 2009. Tractable multi-agent
path planning on grid maps. In IJCAI, 1870–1875.

