Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Compromise-free Pathfinding on a Navigation Mesh

Michael L. Cui
Monash University
Melbourne, Australia
mlcuil @student.monash.edu

Abstract

We want to compute geometric shortest paths in
a collection of convex traversable polygons, also
known as a navigation mesh. Simple to compute
and easy to update, navigation meshes are widely
used for pathfinding in computer games. When
the mesh is static, shortest path problems can be
solved exactly and very fast but only after a costly
preprocessing step. When the mesh is dynamic,
practitioners turn to online methods which typi-
cally compute only approximately shortest paths.
In this work we present a new pathfinding algo-
rithm which is compromise-free; i.e., it is simul-
taneously fast, online and optimal. Our method,
Polyanya, extends and generalises Anya; a re-
cent and related interval-based search technique de-
veloped for computing geometric shortest paths in
grids. We show how that algorithm can be modified
to support search over arbitrary sets of convex poly-
gons and then evaluate its performance on a range
of realistic and synthetic benchmark problems.

1

A navigation mesh divides the traversable space in a pla-
nar environment into a collection of convex polygons. Pop-
ular with researchers and game developers alike, naviga-
tion meshes offer compelling advantages vs. other repre-
sentational techniques: (i) they are complete, meaning every
traversable point appears in the mesh; (ii) they usually have
low density, meaning they have small memory requirements
and are fast to search; (iii) they are flexible, meaning they are
easily constructed and easily modified. Given two points on
a navigation mesh one can compute a path between them in a
variety of ways but only after accepting some type of compro-
mise. We briefly describe three popular and broadly represen-
tative techniques; all assume the input mesh is a Constrained
Delaunay Triangulation (CDT):

Introduction

e Channel Search [Kallmann, 2005] is a two-step tech-
nique that first finds an abstract path between the poly-
gons containing the start and target. Then, as part of a
post-processing step, the path of triangles is refined to
a concrete sequence of points. The compromise in this

Daniel D. Harabor
Monash University
Melbourne, Australia
daniel.harabor@monash.edu

496

Alban Grastien
Data61, Canberra
Australian National University
alban.grastien@data61.csiro.au

case is optimality: Channel Search usually returns only
an approximately shortest path.

TA* [Demyen and Buro, 2006] improves on Channel
Search by computing approximately shortest paths in
a single shot. A significant advantage is that TA* can
compute optimal paths, but only by repeating the search,
possibly many times, and caching each result. The com-
promise in this case is optimality or speed.

TRA* [Demyen and Buro, 2006] is a performance-
oriented extension of TA* which involves an offline pre-
processing step (a smaller abstract graph is constructed
which is faster to search). The principal compromise
in this case is flexibility: TRA* works best when the
environment is static. However, there is clear and sig-
nificant interest in pathfinding with navigation meshes
in dynamic environments; e.g. [van Toll et al., 2012;
Kallmann et al., 2004] and commercial pathfinding li-
braries such as Unreal Engine and NavPower.

In this paper we present a new algorithm for navigation-
mesh pathfinding that is compromise-free: i.e., simultane-
ously fast, online and optimal. Our method, Polyanya, ex-
tends and generalises Anya [Harabor et al., 2016]; from the
related Any-angle Pathfinding Problem (where obstacles have
to follow the grid) to the more general Euclidean Shortest
Path Problem (where obstacles can be arbitrary polygons).
When searching for a path Polyanya employs a novel encod-
ing where sets of points, drawn from the edges of the mesh,
are taken together as contiguous intervals. Each interval is
evaluated using an admissible heuristic and its successors are
derived by projecting the interval, from one polygon to the
next. Polyanya always computes (in a single online search)
the length of the optimal path between any two points on the
mesh if such a path exists. We give a full theoretical descrip-
tion of the algorithm and demonstrate its efficacy on a range
of problem instances drawn from real games.

2 Problem Statement

We now establish the necessary terminology to precisely de-
scribe the Euclidean Shortest Path Problem (ESPP) and its
objective function. Figure 1 will help to illustrate some ideas.
Polygons: A polygon is a bounded figure in a plane whose
shape is defined by a set of points called vertices and which
are in turn connected by a closed set of edges. Each edge

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Not allowed Visible Not visible Corner points
A A A D
B|| C B|| C B E
— /

Figure 1: Examples of visible points, non-visible points and corner
points. We show several simple meshes with traversable polygons
labeled A-E. Points of interest are shown as circles.

e = (a,b) is a contiguous interval between two different ver-
tices; it is closed at both ends and never intersects any vertex
except a and b. This means edges can overlap but only at
their endpoints. Polygons can overlap but only if they share a
common edge or vertex. Two polygons that share an edge are
said to be adjacent.

Maps and Meshes: A map is a plane in which every point
is either traversable or not traversable. Any such map can be
represented, either exactly or to within some arbitrary preci-
sion, by a collection of convex polygons, each of which is
either traversable or not traversable. The set of all traversable
polygons, M, is known collectively as a Navigation Mesh.
The remaining polygons are called obstacles.

Visibility: We say that two traversable points are co-visible
if they can be connected by a straight line that intersects only
points found in M. An agent can travel in straight line be-
tween any two co-visible points.

There are different ways to interpret a situation like the
one depicted on the first example of Fig. 1, whether an agent
should be able to “squeeze” in between the two obstacles and,
if not, what it means to start from such an ambiguous point.
The ambiguity can be removed by inserting a very small, non-
zero, polygon centred on the ambiguous point. This polygon
is traversable if the agent is allowed to squeeze in; otherwise
it is not. The fact that the polygon is very small implies that
the set of paths remains essentially the same. Because this
disambiguation technique is possible we assume in this paper
that such ambiguous situations never occur.

Corner Points: A corner point is a vertex c that appears in
some optimal path (p1, ¢, p2) s.t. p1 and po are not co-visible.
Paths: A path is a sequence of traversable points 7
(p1,...,pr) where each successive pair of points, p; and
Di+1, are co-visible. The length of 7 is the cumulative to-
tal of all straight-line (Euclidean) distances d between every
successive pair of points; i.e., len(r) = YF! d(p;, pis1).
A path is optimal if there exists no alternative path 7’ whose
length is shorter.

Objective Function: The Euclidean Shortest Path Problem
takes as input a pair of traversable points drawn from the map,
a start point s and a target point ¢, and asks for a path between
them, 7*, such that len(7*) is minimum.

3 Algorithm Description

Polyanya is a novel online algorithm for computing Eu-
clidean shortest paths among polygonal obstacles in the
plane. Polyanya takes as input a navigation mesh and a pair
of traversable points called the start and target; it returns an

497

T

(c)
Figure 2: (a) A grid mesh. This game map appeared among the
benchmarks at the 2014 Grid-based Path Planning Competition. (b)
A merged grid mesh. (c) A CDT mesh. (d) A merged CDT mesh.

optimal path between the start and target points if such a path
exists. As is typical in game settings we assume the navi-
gation mesh is created apriori: e.g., by a level designer or
as the result of applying one of the many readily available
mesh generation programs to an environment (in our exper-
iments we employ the freely available triangulation library
Fade2D!). At its core Polyanya performs a forward-driven
point-to-point shortest path search. It follows a well estab-
lished schema whose main components are:

1. A model, to represent partial solutions (i.e., the search
nodes).

2. A successor function, which takes a search node, the
parent, and generates a set of related search nodes, the
children, such that every child can be reached from the

parent directly and without intersecting any obstacles.

. An evaluation function, to measure how promising each
generated search node appears.

4. A priority queue, used to track the order of expansion.

In this section we describe items 1-3 and then paint in broad
strokes the overall search and pruning strategies employed by
Polyanya. Our priority queue (item 4) is a standard binary
heap whose description we omit.

3.1 Search Nodes

A search node is a partial solution to a pathfinding problem.
Under a classical best-first model each partial solution is iden-
tified by a single node n that represent a single path to the
target. Polyanya generalises this model by representing to-
gether and in a single node a set of related partial solutions
(cf. just one) which all have a common prefix path from s.

"nttp://www.geom.at/fade2d/html/

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Definition 1 (From [Harabor et al., 2016]) A search node
(I,7) is a tuple where 1 is a point called the root and I =
[ar, br] is an interval such that each point p € I is visible
from 1. To represent the start node itself, set I = [s| and
assume 1 is located off the plane and visible only from s; the
cost from r to s in this case is zero.

The generalised definition can be interpreted as follows:
there exists a concrete (possibly optimal) path from s to r.
At the point r the path splits, creating a partial solution for
each point p € I. Polyanya considers all of these solutions
together and at the same time.

3.2 Successors

The successor function is an important part of any pathfinding
algorithm: its role is to advance the frontier of the search and
in the process bring us closer to the target. Such a function,
succ(n), takes as input a search node, n, and returns a set of
adjacent search nodes n’ € succ(n) which can all be reached
in a single step or more generally through the application of a
single action. We now give a formal definition for Polyanya’s
nodes and then describe how to compute them.

Definition 2 (From [Harabor et al., 2016]) A successor of a
search node (I,r) is a search node (I',v") such that

1. forall points p’ € I, there exists a point p € I such that
the path (r,p,p') is taut (i.e., locally optimal);

2. 1’ is the last common point shared by all paths (r,p,p’);

and

I is maximal according to the points above and the def-
inition of a search node.

Most pathfinding algorithms advance the search frontier
from one point to the next. Polyanya is different: it pro-
ceeds instead from interval to interval. In broad strokes, we
generate the successors of a search node (1,) by applying an
action that pushes the interval I away from r and through the
interior of an adjacent traversable polygon Y € M (called the
opposite polygon). The successors of (I, r) are found on the
perimeter of Y; since Y is convex those points can be reached
from I with straight lines. Once the pushing operation is com-
plete we simply walk the perimeter of Y and identify which
points, if any, can be assigned to a successor node interval,
I'. We distinguish between two kinds of successors:

1. Observable successors are those where every p’ € I' is
visible, from r through I. They have as their root ' = .

2. Non-observable successors are those where every p’ €
I’ is not visible from r. Since each p’ must be reached
by a taut local path (r, ', p) we set 1’ as one of the end-
points of the interval I = [a, b]. Such paths can only be

taut if 7 is also a corner point.

Figure 3 gives an example of the pushing process and of
the different types of successors. To compute the set of ob-
servable successors we simply project the node (I, r) through
the shaded polygon and onto the points of its perimeter. Each
edge (or part thereof, if only a section is visible) in the pro-
jected region becomes an interval for an observable successor
whose root is ' = r. The set of non-observable successors is
found to the left and right of the projected region — but only if

498

Figure 3: Search node ([z, b],) produces three observable succes-
sors: ([y, fl,7), (If, g],7), and ([g, 2], r); four non-observable suc-
cessors: ([b, c],b), ([¢,d],b), ([d,€],b), and ([e,y], D).

the corresponding left and right endpoint of the interval [is
also a corner point. When this is not the case we do not gener-
ate any non-observable successors through that endpoint (be-
cause any local path to such a successor is sub-optimal).

The initial node requires some extra care. When the start
point sits inside a polygon all successors are defined by (I, r)
where the interval I is an edge of that polygon and the root
r is the start point. In case the start point lies on an edge or
a vertex the polygon is no longer unique, which makes the
procedure slightly more complex. In these cases the intervals
of the successors are all the edges (of any of these polygons)
that do not include the start node.

The final node also requires some extra care. We require
the goal, when it is found, to be contained within an interval
of a search node. If the target is an interior point in the mesh,
it will never be contained within an interval. To alleviate this,
we explicitly generate the target as an additional successor
when pushing into the polygon containing the target. The in-
terval comprises only the target and the root is determined as
with any other successor — either the same root if the target
is observable, or an endpoint of the interval if the target is
non-observable.

3.3 Evaluation Function

The purpose of the evaluation function is to determine which
node should be expanded next. The evaluation function es-
timates the length of the optimal path that can be produced
from a search node derived from the current node. This eval-
uation needs to be as high as possible (to prune nodes that
are not promising) but, for soundness, it must always remain
below the actual value of the optimal path.

A* search nodes are traditionally evaluated by a combi-
nation of the g- and h-values. The g-value is the cost of a
concrete (possibly optimal) path from the point s to n while
the h-value is the heuristic value, a lower-bound estimate on
the remaining cost from n to ¢. The total cost of the partial
solution is called the f-value and computed as f = g + h.
Polyanya, similarly to Anya, uses the length of the path to
root point r as g. For h we compute a minimum Euclidean
distance, from r through I and then to the target. This dis-
tance underestimates the real length since it ignores any ob-
stacles between r and ¢t. Computing this heuristic is a simple
matter of geometry, as illustrated in Figure 4:

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Figure 4: Evaluation of ([a, b],7). Figure 5: Intermediate nodes.

o if the target lies on the other side of / from 7 and in the
cone formed by I from 7 (as for ¢1), then the heuristic is
the straight-line distance d(r, t);

o if the target lies on the other side of I from 7 but on
either side of the cone (as for ¢5), then the heuristic is the
minimal value between d(r, ar)+d(ay,t) and d(r, br)+
d(br,t);

e if ¢ lies on this side of I from r (as for t3), then the
heuristic value can be computed by using its mirror
(here, t1) through 1.

3.4 Search and Pruning

Polyanya is a classical best-first search. However, unlike
classical A*, Polyanya does not keep a closed list of all vis-
ited visited search nodes.

Termination: Polyanya terminates when a node containing
the goal in its interval is expanded. If a path exists between
the start and target, Lemma 4 (next section) shows that the
target is eventually expanded by the search, so the search
terminates in this case. If a path does not exist, Polyanya
may endlessly generate search nodes with bigger and bigger
g values if M contains a cycle. To avoid this, we keep a root
history like Anya which stores the best g value for each vis-
ited root. Whenever a search node would be generated, we
compare the g value with the stored history and discard the
node if it is worse. With this root history, we can ensure that
Polyanya is complete and always terminates with the same
proofs used in [Harabor et al., 2016]. It is also possible to
check that a path exists between s and ¢ by identifying the
containing polygons Y, and Y; and checking if they belong to
the same connected component in the navigation mesh graph.

The two pruning strategies detailed in [Harabor et al.,
2016] also translate to Polyanya, and can be improved:
Cul-de-sac Pruning: A cul-de-sac is any node which does
not have any successors and does not contain the target. As
expanding these will never reach the target, we can prune
them away. If a node pushes into an obstacle, it is trivially
a cul-de-sac as no successor can lie within an obstacle.

We identify a similar pruning technique which we call
“dead-end pruning”. A dead-end is a polygon which is only
adjacent to one traversable polygon, and can be easily identi-
fied while reading in the mesh. If a node pushes into a dead-
end that does not contain the target, we can prune it away as
all the successors will be cul-de-sacs. Similar pruning tech-
niques have previously been explored in the context of grid
maps (see [Bjornsson and Halld6rsson, 2006]).

499

In Figure 3, the two successors ([f, g],r) and ([d, e], b) are
pruned away as they are cul-de-sacs. The successor ([c, d], b)
is also pruned away because it pushes into a dead-end.
Intermediate Pruning: If a node is expanded with a single
observable successor, we can immediately expand that suc-
cessor without pushing it onto the open list, provided it does
not contain the target. The process can be repeated recur-
sively until there is an increase in the branching factor (or
until an obstacle is reached).

We generalise this technique by immediately expanding
any single successor, including non-observable successors. In
Figure 5, node (1, r) is expanded, begetting a single successor
(I7, r}) which is immediately expanded. That begets a single
successor (15, 75), which is further expanded. A similar idea
is described in [Harabor and Grastien, 2014].

4 Theoretical Properties

The proof for correctness of Polyanya mimics that of Anya
[Harabor et al., 2016], but we reproduce it here for self-
containment. We prove that the optimal path always appears
in the open list (Corollary 2); that the first search node ex-
panded that contains the target represents the optimal path
(Lemma 3); and that a search node is eventually expanded
that includes the target (Lemma 4). The analysis assumes an
optimal path always exists and we can always check this is
the case using the procedure from Section 3.4.

Recall that a search node (I,) represents the set of paths
from the start s, to r (this part being described by the parents
of the search node), then through a point of I, and finally to
the target t. We say that (I, r) is a search node of those paths.

Lemma 1 Ifn = (I,r) is a search node of the optimal path
then either I contains the target t or n has at least one suc-
cessor 1/ that is also a search node of 7*.

Proof: We assume the premise of the lemma and further as-
sume that r does not appear in /. Let Y be the opposite poly-
gon of (I,r). Then either the target appears in Y and the
triangle inequality tells us that the suffix of the optimal path
consists in moving straight to the target (this node is gener-
ated as mentioned in Section 3.2).

Otherwise the optimal path consists in exiting Y through
a point p on one of its edges. If the optimal path requires
turning on a point 7’ from I, then p is not visible from r (since
a straight line would be shorter) and 7’ is a corner point at
either extremity of I. Otherwise p is visible from r. Either
way, a search node is generated that includes p € I’ and the
last turning point is updated accordingly. a

Corollary 2 The open list always contains a search node of
an optimal path (or this node is currently being processed).

Proof: By induction: the initial search node is a search node
of an optimal path; every time a search node of an optimal
path is removed from the open list, another one is inserted
(thanks to Lemma 1). O

Lemma 3 The first expanded node that contains the target
corresponds to an optimal path.

Proof: Let f* be the length of the optimal path. Assume that
a node n is expanded that contains the target and that does

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

not correspond to an optimal path. Notice that the f-value of
n is the length of the sub-optimal path (f(n) > f*). From
Corollary 2 we know that there is a node n’ of the optimal
path in the open list. Since the heuristic is admissible we
know that f(n') < f* holds. Then f(n/) < f* < f(n)
contradicts the fact that n was chosen to expand next. O

Lemmad4 A search node is eventually expanded that in-
cludes the target.

Proof: Every search node has a bounded number of succes-
sors. Furthermore, only a finite number of successive search
nodes can have the same g-value (when the corresponding in-
tervals share the same root); otherwise the g-value increases
by a non-trivial value (at least the smallest distance between
two corner points). Therefore the g-value of the first node in
the open list increases steadily and, eventually, reaches the
value of the optimal path. At this point the algorithm will
expand the search node corresponding to the optimal path. O

S Different Types of Meshes

We assume throughout this work that the geometry of the en-
vironment is represented directly as a navigation mesh and
given as input to the pathfinding system. In computer game
applications navigation meshes can be created manually (by
programmers and artists) or produced automatically from de-
tailed scene geometry (e.g. using tools such as Recast
Navigation). Polyanya is compatible with any type of
planar mesh provided each polygon is convex.

We will see that different types of navigation meshes can
have different strengths and weaknesses and two meshes that
appear similar in principle can produce dramatically different
search performance in practice. The problem of which mesh
type to choose, and when to choose one type over another, is
a non-trivial topic and beyond the scope of our present work
(for a partial survey see [Kallmann and Kapadia, 2014]; for
a comparative analysis of some recent works see [van Toll et
al., 2016]). Nonetheless in Section 6.1 we give experimental
results for three simple types of meshes which we produced
to test Polyanya. These are shown in Figure 2(b)-(d):

e CDT: a constrained Delaunay triangulation of the
traversable space, created using the library Fade?2D.

e M-CDT: we greedily merge adjacent polygons ina CDT
mesh while trying to maximise area and retain convexity.

e Rect: we greedily construct a rectangle mesh from a grid
map, always adding the largest possible rectangle.

Each type of mesh is very fast to construct, typically requiring
a few seconds or less of computation. As the overhead is
small we could, in principle, construct the mesh from scratch
and online. In practice we compute the meshes apriori.

6 Empirical Analysis

We test Polyanya on a variety of realistic and synthetic grid
benchmarks which are described in [Sturtevant, 2012]. We
choose these problems because they are diverse, challenging
and because their ubiquity in the literature makes for straight-
forward comparisons. All benchmarks are available from the

500

Maps| # CDT M-CDT Rect

#P #DEDeg| #P #DEDeg| #P #DE Deg
BGIT | 75| 1.3K 0.6K 2.0 0.8K 0.6K 2.0] 0.6K <0.1K 3.4
DA2 | 67| 12K 04K 2.0| 0.6K 04K 2.0| 0.5K 0.1K 3.2
DAO |156] 1.8K 0.6K 2.0 0.9K 0.6K 2.0| 0.8K 0.1K 3.2
Maze | 60| 27.5K 3.4K 2.0[12.3K 3.4K 2.0/10.8K 2.1K 2.0
Rand | 70[159.8K 23.8K 2.2/60.5K 23.8K 2.5447.4K 7.5K 3.1
Room| 40| 13.6K 3.4K 2.1/ 69K 3.4K 22| 35K 0.1K 2.4
SCI | 75| 11.5K 42K 2.0| 64K 42K 2.0/ 52K 09K 33
WC3 | 36| 22K 0.7K 2.0/ 1.1IK 0.7K 2.0| 0.8K 0.2K 3.0

Table 1: We construct and give metrics for a number of simple mesh
types (see Section 5). #P = avg. num polygons; #DE = avg. num
dead-end polygons (see Section 3.4); Deg = average degree.

Avg. Expansions Avg. Speedup

Maps Polyanya Polyanya
ADa| o MCDT Rect|A™3|CDT M-CDT Rect
BGII 79 67 37 131} 19.9] 402 55.7 23.7
DA2 228| 261 120 388|| 2.5]/10.3 17.6 7.0
DAO | 956| 908 499 1725| 82| 83 135 53
Maze | 6633| 7079 1708 1614| 22.8| 103 158.2 157.2
Rand |17476|30615 14243 17934| 09| 0.6 1.0 0.7
Room| 1431| 1862 895 844 10| 63.8 106.0 107.8
SC1 1379| 1444 755 2537 21| 18.1 294 94
WwC3 89| 109 55 132] 3.2/ 303 43.7 21.0

Table 2: Anya vs Polyanya. We measure average performance in
terms of node expansions and search time speedup vs A*. High-
lighted are best results for each metric and benchmark pair.

HOG?2 online repository 2. In Table 1 we give a summary
overview of the input meshes which we describe in Section 5
and which we construct from the grid benchmarks during an
offline preprocessing step.

We implemented Polyanya in C++ and compiled our code
with g++ 6.3.1 using —03. In one of our experiments we con-
trast this algorithm against its direct progenitor, Anya, which
is coded in Java. To account for differences across imple-
mentation languages we measure performance as search time
speedup: i.e. relative improvement vs grid A*. We have writ-
ten two versions of this algorithm, one in Java and the other
in C++. Both versions make similar implementation choices,
both are hand-optimised * and we believe them to be broadly
comparable. All of our source code is publicly available*.
All experiments are performed on a 1.7 GHz Intel Core i5
machine with 4GB of RAM and running Linux 4.8.13.

6.1 Anya

We begin with Table 2 where we compare Polyanya run-
ning on a variety of input meshes against its forebear,
Anya. Both algorithms are online and optimal but Anya re-
quires the traversable space be approximated using a fixed-
resolution grid which is explored row-by-row. By compari-
son, Polyanya takes as input an exact convex partitioning of
the traversable space and explores it polygon-by-polygon. We

2https ://github.com/nathansttt/hog2

3We use bit-packed arrays to store the grid and closed list, pre-
allocate all memory and avoid sqrt operations in the octile heuristic.

*https://bitbucket.org/dharabor/pathfinding

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Baldur's Gate Il Dragon Age Origins StarCraft Random; 10-40% Obstacles
3| 3 _ 3_| 3]
10 3 — Amya 10 3 — Anya 10 3 — Amya 10 3 — Anya
3 Theta* I‘* 3 Theta* 3 Theta* 3 Theta*
7 -+ Lazy Theta* /" | 7] -+ Lazy Theta® 7 -+ Lazy Theta* 7 -+ Lazy Theta®
, | -= FieldA* - | , | -= Field A* , | -= FieldA* , | += Field A*
10°= — - suB-TL = |A\ 10°3 —- suB-TL 10°= — - suB-TL = 10°5 — - sus-TL
E Polyanya , ¢ E| Polyanya E N\ \ E| Polyanya
]] |] |]
1 1] N e 1. r~ 1]
10 3 10" 3 7 h 103 10 3
10°4 . i 100 = 10°4 - | 10°
3 =i 3 e E St S S S e i 3
7 it | P] .]
1074 -1_| -1_| -1

10" 102 10® 10 10° 10° 10" 10% 10® 10" 10°

10°

10" 102 10® 10 10° 10°

10" 102 10° 10* 10° 10°

Figure 6: Polyanya vs. contemporary near-optimal algorithms developed for the Any-angle Pathfinding Problem. We measure performance
vs A*. The x-axis shows how many nodes A* expands (on average) and the y-axis measures (average) speedup. Notice both axes are log10.

observe that while Anya can sometimes expand fewer nodes,
Polyanya usually has a search time advantage. The best vari-
ant, Polyanya+M-CDT, outperforms Anya on both metrics;
it can improve node expansions by up to several factors and
search times by up to one order of magnitude, on average.

6.2 Approximate Any-angle Techniques

In Figure 6 we extend with additional data an apples-to-
oranges experiment from [Harabor ef al., 2016] which com-
pares Anya with a variety of contemporary algorithms for the
Any-angle Pathfinding Problem (APP). APP is a special case
of ESPP where the edges that comprise each obstacle are axis
aligned and the traversable space can be represented exactly
using a fixed resolution grid. The principal points of compar-
ison are: Theta* and Lazy Theta* [Nash and Koenig, 20131,
Field A* [Uras and Koenig, 2015a] and SUB-TL [Uras and
Koenig, 2015b]. The first three algorithms are approximate
and entirely online. SUB-TL assumes the map is static and
performs additional pre-processing. All four methods pro-
duce approximately shortest paths.

The principal metric in this case is search-time speedup
vs grid A*. We run the same experiment as [Harabor et al.,
2016] and give results for Polyanya+M-CDT. We observe
that Polyanya outperforms all approximate and online tech-
niques by a large margin. Compared to SUB-TL, Polyanya
is often comparable and sometimes better.

6.3 TA* and TRA*

We reproduce an experiment from [Demyen and Buro, 2006]
on the grid benchmark Baldur’s Gate II and compare against
published results for the algorithms TA* and TRA*. A con-
trast between these methods and our work is given in Sec-
tion 1. Figure 7 (left) is taken directly from [Demyen and
Buro, 2006] and shows relative improvement medians for
TA* and TRA* vs. the authors’ own reference implemen-
tation of grid A*. Figure 7 (right) shows our results with
Polyanya on the same maps and with the same instances.
We observe that Polyanya (all variants) is competitive with
or significantly better than the online algorithm TA*. In the
best case, we improve performance by 2.5 times. Meanwhile
TRA* appears faster still and by a similar margin. It is impor-
tant to point out that the times reported for TA* and TRA* are
for a single run of each algorithm (denoted by F=1). In [De-
myen and Buro, 2006] the authors run each method up to 10
times to obtain optimal or close-to-optimal paths. Polyanya,

501

Median Speedup over A* Median Speedup over A*

— Polyanya+M-CDT
--- Polyanya+CDT
Polyanta+Rect

TRA*(F=1) —— ¥
TA*(F=1) wweeeeeery
PRA oo

time ratio
—_
o
S

time ratio

0 100 200 300 400 500 0

T T T T T
100 200 300 400 500
A* path length

p g A* path length

Figure 7: Polyanya vs. TA* and TRA* on benchmark BGII

by comparison, computes the optimal path in a single shot.
It seems reasonable to assume that in a like-for-like setup the
advantage Polyanya has vs. TA* will be magnified while its
disadvantage vs TRA* will be at the very least reduced.

7 Conclusion

We introduce Polyanya, a new exact and online algorithm
for solving the point-to-point Euclidean Shortest Path Prob-
lem (ESPP) on a navigation mesh. Contemporary algorithms
for ESPP exist but all involve some form of compromise. For
example, well known methods such as Theta* and TA* can
solve ESPP instances entirely online only by trading optimal-
ity for speed (or vice versa). Alternatively, preprocessing-
based algorithms such as TRA* and SUB-TL can solve ESPP
instances up to two orders of magnitude faster but only under
certain sometimes prohibitive assumptions that compromise
flexibility (e.g. the map never changes). Polyanya, by com-
parison, is compromise free: it solves ESPP instances exactly,
entirely online and very fast. In an empirical comparison we
find that Polyanya is up to two orders faster than a range of
approximate and online ESPP algorithms. We also show that
Polyanya is often able to keep pace with, and sometimes out-
perform even preprocessing-based techniques.

There are many possibilities for further research. For ex-
ample we believe the h-value heuristic can be modified in or-
der to solve single-source multiple-target paths. Another pos-
sibility involves stronger pruning of redundant search nodes;
e.g. when an interval is reached from two different root
points. A third promising direction is to investigate how dif-
ferent mesh types impact the performance of search; e.g. get-
ting the right balance between polygon size vs. degree.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

References

[Bj6rnsson and Halld6rsson, 2006] Yngvi Bjérnsson and
Kari Halldérsson. Improved Heuristics for Optimal
Path-finding on Game Maps. In Proceedings of the
Second Artificial Intelligence and Interactive Digital
Entertainment Conference, AIIDE, June 20-23, Marina
del Rey, California, volume 6, pages 9—14, 2006.

[Demyen and Buro, 2006] Douglas Demyen and Michael
Buro. Efficient Triangulation-Based Pathfinding. In
Proceedings of the Twenty-First National Conference on
Artificial Intelligence, AAAIL July 16-20, Boston, Mas-
sachusetts, USA, pages 942-947, 2006.

[Harabor and Grastien, 2014] Daniel Damir Harabor and Al-
ban Grastien. Improving Jump Point Search. In Proceed-
ings of the Twenty-Fourth International Conference on Au-
tomated Planning and Scheduling, ICAPS, Portsmouth,
New Hampshire, USA, June 21-26, 2014.

[Harabor et al., 2016] Daniel Harabor, Alban Grastien, Din-
dar Oz, and Vural Aksakalli. Optimal Any-angle Pathfind-
ing in Practice. Journal of Artificial Intelligence Research,
56(1):89-118, May 2016.

[Kallmann and Kapadia, 2014] Marcelo Kallmann and
Mubbasir Kapadia. Navigation Meshes and Real-
time Dynamic Planning for Virtual Worlds. In ACM
SIGGRAPH 2014 Courses, page 3. ACM, 2014.

[Kallmann et al., 2004] Marcelo Kallmann, Hanspeter Bieri,
and Daniel Thalmann. Fully Dynamic Constrained Delau-
nay Triangulations. In Geometric Modeling for Scientific
Visualization, pages 241-257. Springer, 2004.

[Kallmann, 2005] Marcello Kallmann. Path Planning in Tri-
angulations. In IJCAI Workshop on Reasoning Represen-
tation and Learning in Computer Games. 2005.

[Nash and Koenig, 2013] Alex Nash and Sven Koenig. Any-
Angle Path Planning. Al Magazine, 34(4):9, 2013.

[Sturtevant, 2012] N. Sturtevant. Benchmarks for Grid-
Based Pathfinding. IEEE Transactions on Computational
Intelligence and Al in Games, 4(2):144-148, 2012.

[Uras and Koenig, 2015a] Tansel Uras and Sven Koenig. An
Empirical Comparison of Any-Angle Path-Planning Algo-
rithms. In Proceedings of the Eighth Annual Symposium
on Combinatorial Search, SoCS 2015, 11-13 June 2015,
Ein Gedi, the Dead Sea, Israel, pages 206-211, 2015.

[Uras and Koenig, 2015b] Tansel Uras and Sven Koenig.
Speeding-Up Any-Angle Path-Planning on Grids. In Pro-
ceedings of the Twenty-Fifth International Conference on
Automated Planning and Scheduling, ICAPS, Jerusalem,
Israel, June 7-11, pages 234-238, 2015.

[van Toll et al., 2012] Wouter G. van Toll, Atlas F. Cook,
and Roland Geraerts. A Navigation Mesh For Dynamic
Environments. Computer Animation and Virtual Worlds,
23(6):535-546, 2012.

[van Toll et al., 2016] Wouter G. van Toll, Roy Triesscheijn,
Marcelo Kallmann, Ramon Oliva, Nuria Pelechano, Julien
Pettré, and Roland Geraerts. A Comparative Study of Nav-
igation Meshes. In Proceedings of the 9th International

502

Conference on Motion in Games, MIG 16, pages 91-100,
New York, NY, USA, 2016. ACM.

