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Integrated Task Assignment and Path Planning for
Capacitated Multi-Agent Pickup and Delivery
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Abstract—Multi-agent Pickup and Delivery (MAPD) is a chal-
lenging industrial problem where a team of robots is tasked
with transporting a set of tasks, each from an initial location
and each to a specified target location. Appearing in the context
of automated warehouse logistics and automated mail sortation,
MAPD requires first deciding which robot is assigned what task
(i.e., Task Assignment or TA) followed by a subsequent coordi-
nation problem where each robot must be assigned collision-free
paths so as to successfully complete its assignment (i.e., Multi-
Agent Path Finding or MAPF). Leading methods in this area
solve MAPD sequentially: first assigning tasks, then assigning
paths. In this work we propose a new coupled method where
task assignment choices are informed by actual delivery costs
instead of by lower-bound estimates. The main ingredients of our
approach are a marginal-cost assignment heuristic and a meta-
heuristic improvement strategy based on Large Neighbourhood
Search. As a further contribution, we also consider a variant
of the MAPD problem where each robot can carry multiple
tasks instead of just one. Numerical simulations show that our
approach yields efficient and timely solutions and we report
significant improvement compared with other recent methods
from the literature.

Index Terms—Task and Motion Planning; Motion and Path
Planning; Path Planning for Multiple Mobile Robots or Agents

I. INTRODUCTION

IN automated warehouse systems, a team of robots works
together to fulfill a set of customer orders. Each order com-

prises one or more items found on the warehouse floor, which
must be delivered to a picking station for consolidation and
delivery. In automated sortation centres, meanwhile, a similar
problem arises. Here, the robotic team is tasked with carrying
mail tasks from one of several emitter stations, where new
parcels arrive, to a bin of sorted tasks, all bound for the same
processing facility where they will be dispatched for delivery.
Illustrated in Fig. I, such systems are at the heart of logistics
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Fig. 1. MAPD applications: (a) an automated fulfillment center with robots
carrying multiple objects [6]; (b) an automated sortation centre [7].

operations for major online retailers such as Amazon and
Alibaba. Practical success in both of these contexts depends
on computing timely solutions to a challenging optimization
problem known in the literature as Multi-agent Pickup and
Delivery (MAPD) [1].

In MAPD, we are given a set of tasks (equiv. packages)
and a team of cooperative agents (equiv. robots). Our job is
twofold: first, we must assign every task to some robot; second,
we need to find for each robot a set of collision-free paths that
guarantee every assigned task to be successfully completed.
Each of these aspects (resp. Multi-robot task assignment
(TA) [2] and Multi-agent Path Finding (MAPF) [3]) is itself
intractable, which makes MAPD extremely challenging to
solve in practice. Further complicating the situation is that the
problem is lifelong or online, which means new tasks arrive
continuously and the complete set of tasks is a priori unknown.

A variety of different approaches for MAPD appear in the
recent literature. Optimal algorithms, such as CBS-TA [4],
guarantee solution quality but at the cost of scalability: only
small instances can be solved and timeout failures are com-
mon. Decentralised solvers, such as TPTS [1], can scale to
problems with hundreds of agents and hundreds of tasks but
at the cost of solution quality: assignments are greedy and
made with little regard to their impact on overall solution
costs. Other leading methods, such as TA-Hybrid [5], suggest a
middle road: MAPD is solved centrally but as a sequential two-
stage problem: task assignment first followed by coordinated
planning after. The main drawback in this case is that the
assignment choices are informed only by lower-bound delivery
estimates instead of actual costs. In other words, the cost of
the path planning task may be far higher than anticipated by
the task assignment solver.

In this work we consider an alternative approach to MAPD
which solves task assignment and path planning together.
We design a marginal-cost assignment heuristic and a meta-
heuristic improvement strategy to match tasks to robots. The
costs of these assignments are evaluated by solving the associ-
ated coordination problem using prioritised planning [8]. We
then iteratively explore the space of possible assignments by
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destroying and repairing an incumbent solution using Large
Neighbourhood Search [9]. We give a complete description
of this algorithm and we report convincing improvement in
a range of numerical simulations vs. the Token Pass and
Task Swap (TPTS) algorithm in [1], arguably the current
state-of-the-art sub-optimal method in this area. As a further
contribution we also consider and evaluate a natural extension
of the MAPD problem where each agent is allowed to carry
more than one task at a time, reflecting emerging robotic
warehouse systems (see e.g. [6], Section I (a)). For compar-
ison, all other work in the literature assume the capacity of
each agent is always 1 which implies immediate delivery is
required after every pickup. We show that in the generalised
case solution costs can decrease substantially, allowing higher
system performance with the same number of agents.

II. RELATED WORK

A. Task Assignment

The problem studied in this paper requires both the task
assignment of robots and the planning of collision-free paths.
Nguyen et al. [10] solved a generalised target assignment
and path finding problem with answer set programming. They
designed an approach operating in three phases for a simplified
warehouse variant, where the number of robots is no smaller
than the number of tasks and unnecessary waiting of agents
exists between the three phases. As a result, the designed
approach scales only to 20 tasks or robots.

The task assignment aspect of the studied problem is related
to multi-robot task allocation problems, which have been
widely studied [2], [11]. Most closely related are the VRP
[12] and its variants [13], all of which are NP-hard problems.
The pickup and delivery task assignment problems have also
received attention [14], [15]. In [14], the package delivery task
assignment for a truck and a drone to serve a set of customers
with precedence constraints was investigated, where several
heuristic assignment algorithms are proposed. Cordeau and
Laporte [15] conducted a review on the dial-a-ride problem,
where the pickup and delivery requests for a fleet of vehicles
to transport a set of customers need to respect the customers’
origins and destinations. In [16], the original concept of
regret for not making an assignment may be found to assign
customers to multiple depots in a capacity-constrained routing,
where the regret is the absolute difference between the best
and the second best alternative. For the vehicle routing and
scheduling problem with time windows in [17], Potvin and
Rousseaua used the sum of the differences between the best
alternative and all the other alternatives as the regret to route
each customer. Later on, in [18], agent coordination with regret
clearing was studied. In the paper, each task is assigned to the
agent whose regret is largest, where the regret of the task is
the difference between the defined team costs resulting from
assigning the task to the second best and the best agent. But
all the methods above avoid reasoning about collisions of
vehicles, they assume, quite correctly for vehicle routing, that
routes of different vehicles do not interfere. This assumption
does not hold however for automated warehouses or sortation
centres.

B. Multi-agent Pickup and Delivery

For warehouses or sortation centres, it is necessary to
consider the interaction between agent routes. The MAPD
problem describes this scenario. Ma et al [1] solves the MAPD
problem online in decentralised manner using a method similar
to Cooperative A* [8], and in a centralised manner, which first
greedily assigns tasks to agents using a Hungarian Method and
then uses Conflict Based Search (CBS) [19] to plan collision-
free paths. Liu et al [5] proposed TA-Hybrid to solve the
problem offline, which assumes all incoming tasks are known
initially. TA-Hybrid first formulates the task assignment as
a travelling salesman problem (TSP) and solves it using an
existing TSP solver. Then it plans collision-free paths using a
CBS-based algorithm.

Researchers have also investigated how to solve this prob-
lem optimally. Honig et al [4] proposed CBS-TA, which
solves the problem optimally by modifying CBS to search
an assignment search tree. However, solving this problem
optimally is challenging, which leads to the poor scalability of
CBS-TA. Other limitations of CBS-TA and TA-Hybrid are that
they are both offline and hard to adapt to work online, and they
don’t allow an agent to carry multiple items simultaneously.

C. Multi-agent Path Finding

Multi-agent path finding (MAPF) is an important part of
MAPD problem and is well studied. Existing approaches to
solve MAPF problems are categorised as optimal solvers,
bounded-suboptimal solvers, prioritised solvers, rule-based
solvers, and so on. Optimal solvers include Conflict Based
Search (CBS) [19], Branch-and-Cut-and-Price (BCP) [20],
A* based solvers [21] and Reduction Based Solvers [22].
These solvers solve the problem optimally and their weakness
is the poor scalability. Bounded-suboptimal solvers such as
Enhanced CBS (ECBS) [23] can scale to larger problems
to find near optimal solutions. Prioritised solvers plan paths
for each agent individually and avoid collisions with higher
priority agents. The priority order can be determined before
planning as in Cooperative A* (CA) [8], or determined on
the fly as in Priority Based Search (PBS) [24]. Rule-base
solvers like Parallel Push and Swap [25] guarantee to find
solutions to MAPF in polynomial time, but the quality of
these solutions is far from optimal. Some researchers focus
on the scalability of online multi-agent path finding in MAPD
problem. Windowed-PBS [26] plans paths for hundreds of
agents in MAPD problem, however it assumes that tasks are
assigned by another system.

D. Practical Considerations

This research focuses on the task assignment and path
planning for real world applications. However, it also needs
to consider plan execution and kinematic constraints necessary
to achieve a computed plan in practice.

One issue that can arise in practice is unexpected delays,
such as those that can be caused by a robot’s mechanical
differences, malfunctions, or other similar issues. Several
robust plan execution policies were designed in [27] and
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[28] to handle unexpected delays during execution. The plans
generated by our algorithms can be directly and immediately
combined with these policies. Furthermore, k-robust planning
was proposed in [29], which builds robustness guarantees into
the plan. Here an agent can be delayed by up to k timesteps
and the plan remains valid. Our algorithms can also adapt this
approach to generate a k-robust plan.

Actual robots are further subject to kinematic constraints,
which are not considered by our MAPF solver. To overcome
this issue, a method was introduced in [30] for post-processing
a MAPF plan to derive a plan-execution schedule that con-
siders a robot’s maximum rotational velocities and other
properties. This approach is compatible with and applicable
to any MAPF plan computed by our approach.

III. PROBLEM FORMULATION

Consider that multiple dispersed robots need to transport
a set of tasks from their initial dispersed workstations to
corresponding destinations while avoiding collisions, where
each task has a release time, that is the earliest time to be
picked up. The robots have a limited loading capacity, which
constrains the number of tasks that each robot can carry
simultaneously. Each robot moves with a constant speed for
transporting the tasks and stops moving after finishing its tasks.
The objective is to minimise the robots’ total travel delay
(TTD) to transport all the tasks while avoiding collisions.

A. Formula Definition As An Optimisation Problem

We use P = {1, · · · , n} to denote the set of indices of n
randomly distributed tasks that need to be transported from
their initial locations to corresponding dispersed destinations.
Each task i ∈ P is associated with a given tuple (si, gi, ri),
where si is the origin of i, gi is the destination of i, and ri
is the release time of i. R = {n + 1, · · · , n + m} denotes
the set of indices of m > 1 robots that are initially located at
dispersed depots. We use sk to represent the origin of robot
k ∈ R. To transport task i, one robot needs to first move to
the origin si of i to pick up the task no earlier than its release
time ri, and then transport the task to its destination gi. It
is assumed that the robots can carry a maximum of C tasks
at any time instant. Let nk(t) ≤ C be the number of tasks
carried by robot k ∈ R at time instant t, and pk(t) be the
position of robot k at t. We model the operation environment
as a graph consisting of evenly distributed vertices and edges
connecting the vertices, and assume that the tasks and robots
are initially randomly located at the vertices. When the robots
move along the edges in the graph, they need to avoid collision
with each other: so two robots cannot be in the same vertex
at the same time instant t, and they also cannot move along
the same edge in opposite directions at the same time. Let
I = {s1, ..., sn+m, g1, ..., gn}, and t(i, j) denote the shortest
time for a robot to travel from i to j for each pair of i, j ∈ I.
Trivially, t(i, i) = 0 for each i ∈ I.

Let σijk : I×I×R → {0, 1} be the path-planning mapping
that maps the indices i, j ∈ I of the starting and ending
locations and k ∈ R of the kth robot to a binary value, which
equals one if and only if it is planned that robot k directly

travels from location i to location j for performing a pick-
up or drop-off operation for transporting the tasks associated
with the locations. So σiik = 0 for all i ∈ I and k ∈ R.
Let the task-assignment mapping µik : P ×R → {0, 1} map
the indices i ∈ P of the ith task and k ∈ R of the kth
robot to a binary value, which equals one if and only if it
is planned that robot k picks up task i at si no earlier than
ri and then transports i to its destination. We use variable
a(j), initialised as a(j) = 0, to denote the time when a robot
performs a pick-up or drop-off operation at location j ∈ I
to transport a task. Thus, nk(a(si) + 1) = nk(a(si)) + 1
if pk(a(si)) = si, and nk(a(gi) + 1) = nk(a(gi)) − 1 if
pk(a(gi)) = gi, ∀i ∈ P,∀k ∈ R.

Then, the objective to minimize the total travel delay
(TTD) for the robots to transport all the tasks while avoiding
collisions is to minimise

f =
∑
i∈P

(a(gi)− ri), (1)

subject to ∑
j∈I

σjsik =
∑
j∈I

σsijk, ∀i ∈ P,∀k ∈ R; (2)∑
j∈I

σjsik = µik, ∀i ∈ P,∀k ∈ R; (3)∑
k∈R

µik = 1, ∀i ∈ P; (4)

σijk · (pk(a(i))− i) = 0, ∀i, j ∈ I,∀k ∈ R; (5)
σijk · (pk(a(j))− j) = 0, ∀i, j ∈ I,∀k ∈ R; (6)

ri ≤ a(si), ∀i ∈ P; (7)
σijk · (a(i) + t(i, j)) ≤ a(j), ∀i, j ∈ I, ∀k ∈ R; (8)

nk(t) ≤ C,∀k ∈ R,∀t; (9)
pk(t) 6= pw(t), ∀k,w ∈ R, k 6= w,∀t; (10)

(pk(t), pk(t+ 1)) 6= (pw(t+ 1), pw(t)), ∀k,w ∈ R,∀t;
(11)

σijk, µik ∈ {0, 1},∀i, j ∈ I,∀k ∈ R.

Constraint (2) requires that the same robot drops off the task
picked up by it; (3) denotes that a task will be transported by a
robot if the robot picks up the task; (4) implies that each task
is transported by exactly one robot; (5) and (6) require that
vehicle k will visit all the locations, planned to be visited, at
certain time instants; (7) guarantees that the earliest time for
the robots to pickup every task is the time when the task is
released; (8) ensures that there is no shorter time for each robot
to move between two arbitrary locations i and j compared with
t(i, j); (9) guarantees that the robots’ capacity constraint is
always satisfied; (10) and (11) require that there is no collision
between any two robots.

IV. TASK ASSIGNMENT AND PATH PLANNING

Existing MAPD algorithms perform task assignment and
path planning separately. Here we propose several algorithms
for simultaneous task assignment and path planning, and path
costs from planning are used to support the task assignment.
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Fig. 2. The flowchart of MCA/RMCA for assigning three tasks/packages
{t1, t2, t3} to three robots {1, 2, 3}. The gray box is priority heap H, green
box is potential assignment heap h, orange box is current assignment set A,
dashed border box is ordered action sequence oi for each robot i, si is i’s
initial location, and pt3 and dt3 are respectively the pick-up and destination
location of task t3.

Algorithm 1 Simultaneous Task Assignment and Path Plan-
ning
Require: Current Assignment Set A, task set P , robot set R, and

the loading capacity C.
1: Pu ← P
2: H ← build potential assignment heaps based on A
3: while Pu 6= ∅ do
4: pai

k ← H.top().top()
5: A ← (A− {ak}) ∪ {pai

k}
6: ak ← pai

k

7: Delete i from Pu

8: Delete hi from H
9: for hj ∈ H do

10: // Update paj
k based on ak.ok

11: paj
k ← Get assignment of j on k from hj

12: paj
k.o

j
k ← insert(j, ak.ok)

13: paj
k.path← planPath(paj

k.o
j
k)

14: hj .update(pa
j
k)

15: // Update top elements’ paths
16: updateHeapTop(hj , ak, 1 + (RMCA)) // Algorithm 2
17: end for
18: end while
19: return A

A. Task Assignment Framework

Fig. 2 shows the overall process of how task assignment
and path planning are performed simultaneously. The key
component of this approach is a current assignment set A
and a priority heap H. A stores a set of assignments ak which
contains ok, an ordered sequence of actions (pick-up and drop-
off each task) assigned to each robot k ∈ R, k’s current
collision-free path, and the TTD for k to transport the assigned
tasks. ok is initialized as {sk}, and t(ok) is used to denote the
TTD for robot k to transport all the tasks by following ok. The
priority heap H stores a set of potential assignment heaps hi,
one for each unassigned task i ∈ P . A potential assignment
heap hi for task i stores all potential assignments of i to each
robot k ∈ R based on k’s current assignment ak. An entry in
the heap hi is a potential assignment paik of task i to robot k
which includes updated versions of ok and a revised path and
cost for the agent under the addition of task i to robot k. The
algorithm continues assigning tasks from the unassigned task
set Pu initialized as P , and keeps updating H until all tasks
are assigned.

Algorithm 1 shows the pseudo-code for task assignment
framework. At the start of the algorithm, A has no assigned

Algorithm 2 Update potential assignment heap for (R)MCA
Require: Assignment heap hj , new assignment ak, limit v

1: while ∃ element paj
l in top v elements of hj with collision with

ak.path do
2: paj

l .path← planPath(paj
l .o

j
l , ak)

3: hj .updateTop(v)
4: end while

tasks and paths. H is initialized to include one potential
assignment heap for each task. Each potential assignment heap
tries to assign the task i to every robot based on A.

The main while loop of the algorithm keeps selecting and
assigning the top potential assignment paik of the top potential
assignment heap of H. The potential assignment paik assigns
task i to robot k. Then the ak ∈ A is replaced by paik, hi
is deleted from H and i deleted from Pu. When the action
sequences ok and path for robot k in A change, all other
potential assignment’s action sequence ojk on robot k in any
hj , j ∈ Pu/{i}, must be recalculated based on the new path
for agent k.

The behaviour of insert() function in Algorithm 1 will be
explained in section IV-B and section IV-C. The planPath()
function uses prioritised planning with space-time A* [8],
which is fast and effective, to plan a single path for agent
k following its ordered action sequence ok while avoiding
collisions with any other agents’ existing paths in A. As a
result, the overall priority order for path planning is decided
by the task assignment sequence. It is worth noting that the
path planning part of Algorithm 1 might be incomplete as the
prioritised planning is known to be incomplete [24].

For the remaining potential assignments on robot k′, k′ 6=
k, k′ ∈ R in any hj , the recalculation of action sequence
ojk′ is not necessary since the assigned tasks ak′ ∈ A do
not change. However their current paths may collide with the
updated agents path ak.path. To address this issue, we could
check for collisions of all potential assignments for agents
other than k and update their paths if they collide with the
new path for agent k. A faster method is to only check and
update the paths for assignments at the top v elements of
each potential assignment heap using the updateHeapTop()
function shown in Algorithm 2. Using the second method
saves considerable time and it only slightly influences the task
assignment outcome.

A potential assignment heap sorts each potential assignment
in increasing order of marginal cost. The sorting order of H
is decided by the task selection methods defined below.

B. Marginal-cost Based Task Selection

We now introduce the marginal-cost based task assignment
algorithm (MCA). The target of MCA is to select a task i? in
Pu to be assigned to robot k? ∈ R, with action sequences q?1
and q?2 for k? to pick up and deliver i?, while satisfying:

(k?, i?, q?1 , q
?
2) = argmin

k∈R,i∈Pu,
1<q1≤|ok|,

q1<q2≤|ok|+1

{t((ok ⊕q1 si)⊕q2 gi)− t(ok)},

(12)
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where operator (ok⊕q1 si)⊕q2 gi means to first insert location
si at the q1th position of the current route ok, and then insert
location gi at the q2th position of the current ok. If q1 =
|ok|, si is inserted to the second last of ok where |ok| is the
length of ok and the last action should always be go back to
start location. After assigning task i? to robot k? ∈ R, the
unassigned task set Pu is updated to Pu = Pu \ {i?}, and
k?’s route is updated to ok? = (ok? ⊕q?1

si?)⊕q?2
gi? .

To satisfy equation (12), the insert() function in Algorithm
1 tries all possible combinations of q?1 and q?2 and selects q?1
and q?2 that minimise the incurred marginal TTD by following
ok while ignoring collisions for transporting task i?, where
k’s load is always smaller than capacity limit C. Then the
planPath() function uses an A? algorithm to plan a path fol-
lowing oik, while avoiding collision with any ak′ .path, ak′ ∈
A, k′ 6= k, and calculates the real marginal cost in terms of
TTD. Finally, the updateHeapTop() function (Algorithm 2
with v = 1) updates the potential assignment heaps. The heap
of potential assignment heaps H sorts potential assignment
heaps based on marginal cost of the top potential assignment
paitop of each potential assignment heap hi in increasing order,
where i ∈ Pu.

C. Regret-based Task Selection
This section introduces a regret-based MCA (RMCA),

which incorporates a form of look-ahead information to select
the proper task to be assigned at each iteration. Inspired by
[16], [18], RMCA chooses the next task to be assigned based
on the difference in the marginal cost of inserting the task into
the best robot’s route and the second-best robot’s route, and
then assigns the task to the robot that has the lowest marginal
cost to transport the task.

For each task i in the current unassigned task set Pu, we
use k∗1 to denote the robot that inserting i into its current route
with the smallest incurred marginal travel cost while avoiding
collisions, where

(k?1 , q
?
1 , q

?
2) = argmin

k1∈R,
1<q1≤|ok|,

q1<q2≤|ok|+1

{t((ok ⊕q1 si)⊕q2 gi)− t(ok)}.

(13)
The second-best robot k∗2 ∈ R \ {k∗1} to serve i is

(k?2 , p
?
1, p

?
2) = argmin

k2∈R\{k∗1},
1<p1≤|ok|,

p1<p2≤|ok|+1

{t((ok ⊕p1
si)⊕p2

gi)− t(ok)}.

(14)
Then, we propose two methods for RMCA to determine

which task i∗ ∈ Pu will be assigned.
The first method, RMCA(a), uses absolute regret which

is commonly used in other regret-based algorithms. The task
selection satisfies:

i? = argmax
i∈Pu

t((ok?
2
⊕p?

1
si)⊕p?

2
gi)− t((ok?

1
⊕q?1

si)⊕q?2
gi).

(15)
The second method, RMCA(r), uses relative regret to select

a task satisfying the following equation:

i? = argmax
i∈Pu

t((ok?
2
⊕p?

1
si)⊕p?

2
gi)/t((ok?

1
⊕q?1

si)⊕q?2
gi).

(16)

Algorithm 3 Anytime Improvement Strategy
Require: A set of current assignment A, Group size n, time limit

1: while runtime < time limit do
2: A′, Pu ← destroyTasks(A, n)
3: A′ ← RMCA(A′,Pu)
4: if A′.cost ≤ A.cost then
5: A = A′
6: end if
7: end while
8: return A set of current assignment A

Both RMCA(r) and RMCA(a) use the same insert() func-
tion in section IV-B to select an insert location for each
potential assignment. The main difference between RMCA
and MCA is that the heap H sorts the potential assignment
heaps hi, i ∈ Pu by absolute or relative regret. RMCA uses
Algorithm 2 with v = 2 to ensure that the top two elements
of each heap are kept up to date.

D. Anytime Improvement Strategies

After finding an initial solution based on RMCA, we make
use of an anytime improvement strategy on the solution. This
strategy is based on the concept of Large Neighbourhood
Search (LNS) [9]. As shown in Algorithm 3, the algorithm
will continuously destroy some assigned tasks from the current
solution and reassign these tasks using RMCA. If a better
solution is found, we adopt the new solution, and otherwise we
keep the current solution. We keep destroying and re-assigning
until time out. We propose three neighbour selection strategies
to select tasks to destroy.

1) Destroy random: This method randomly selects a group
of tasks from all assigned tasks. The selected tasks are
removed from their assigned agents and re-assigned using
RMCA.

2) Destroy worst: This strategy randomly selects a group
of tasks from the agent with the worst TTD. The algorithm
records the tasks that are selected in a tabu list to avoid
selecting them again. After all tasks are selected once, we
clear the tabu list and allow all tasks to be selected again.

3) Destroy multiple: This method selects a group of agents
that have the worst sum of TTD. Then it randomly destroys
one task from each agent. It also makes use of a tabu list as
in the previous strategy.

V. EXPERIMENTS

We perform our experiments on a 21×35 warehouse map as
shown in Fig. 3, where black tiles are static obstacles, white
tiles are corridors, blue tiles represent potential origins and
destinations (endpoints) of the tasks, and orange tiles represent
starting locations of the robots.

For the experiments, we test the performance of the de-
signed algorithms under different instances. Each instance
includes a set of packages/tasks with randomly generated
origins and destinations and a fleet of robots/agents, where
the origin and destination for each task are different1.

1Our implementation codes of the designed algorithms are available at:
https://github.com/nobodyczcz/MCA-RMCA.git
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Fig. 3. A warehouse map with 21 x 35 tiles, where blue tiles are endpoints
for tasks, orange tiles are initial locations of the robots, and black tiles are
static obstacles.

A. One-shot Experiment

We first evaluate the designed algorithms in an offline
manner to test their scalability. Here, we assume that all the
tasks are initially released. This helps us to learn how the
number of tasks and other parameters influence the algorithms’
performance, and how many tasks our algorithm can process
in one assignment time instant.

1) Relative TTD and Runtime: The first experiment com-
pares variants of methods for different numbers of agents
and different capacities of agents. We compare two decoupled
versions of the algorithms, where we first complete the task
assignment before doing any route planning. In these variants
we use optimal path length as the distance metric while
performing task assignment. We consider two variants: decou-
pled MCA (MCA-pbs) where we simply assign tasks to the
agent which will cause the least delay (assuming optimal path
length travel), and decoupled RMCA (RMCA(r)-pbs) where
we assign the task with maximum relative regret to its first
choice. The routing phase uses PBS [24] to rapidly find a set of
collision-free routes for the agents given the task assignment.
We compare three coupled approaches: MCA uses greedy task
assignment, while RMCA instead uses maximum (absolute or
relative) regret to determine which task to assign first. For
each number of tasks, each number of agents (Agents) and
each capacity (Cap), we randomly generate 25 instances. Each
task in each instance randomly selects two endpoints (blue tiles
in Fig. 3) as the start and goal locations for the task.

Fig. 4 shows the algorithms’ relative TTD. The relative
TTD is defined as real TTD minus the TTD of RMCA(r)
when ignoring collisions. The reason we use relative TTD
as a baseline is that the absolute TTD values in one-shot
experiment are very large numbers varying in a relative small
range. If using absolute TTD values, it is hard to distinguish
the performance difference of algorithms in plots. Overall we
can see that the decoupled methods are never the best, thus
justifying that we want to solve this problem in a coupled
manner instead of separate task assignment and routing. For
Cap= 1, MCA is preferable since we cannot modify the route
of an agent already assigned to a task to take on a new task
and regret is not required. For Cap= 3, RMCA(r) eventually
becomes the superior approach as the number of agents grows.
When Cap= 5, RMCA(r) is clearly the winner. Interestingly,
the absolute regret based approach RMCA(a) does not perform

Fig. 4. Mean relative TTD versus number of tasks on different numbers of
agents and different capacity values.

Fig. 5. Average runtime versus number of tasks on different numbers of
agents and different capacity values.

well at all. This may be because the numbers of tasks assigned
to the individual agents by RMCA(a) are far from even, and the
resulting travel delay changes greatly when agents are assigned
with more tasks. In other words, RMCA(a) prefers to assign
tasks to agents with more tasks. The relative regret is more
stable to these changes.

Fig. 5 shows the average runtime for the above experiment.
The results show that decoupled approaches are advantageous
in runtime, especially for instances with a large number of
tasks and small capacity. Although RMCA and MCA require
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TABLE I
MEAN RELATIVE TTD OF ANYTIME MCA/RMCA ON 500 TASKS.

Cap Agents RMCA(r)
RMCA(r)+DR RMCA(r)+DW RMCA(r)+DM

Group Size Group Size Group Size
1 3 5 1 3 5 1 3 5

1 20 2762 1800 1687 1752 2108 2025 2088 2714 2565 2454
30 2871 2009 1902 1915 2276 2215 2363 2827 2743 2652
40 2876 2089 2031 2060 2367 2328 2471 2836 2788 2701
50 2906 2195 2173 2199 2481 2469 2604 2887 2830 2791

3 20 1085 529 487 470 530 416 464 1058 980 861
30 1132 765 710 689 729 654 686 1116 1074 1023
40 1155 819 798 781 812 791 792 1148 1129 1108
50 1193 888 856 858 875 862 877 1187 1171 1131

5 20 726 370 331 319 311 253 260 698 635 585
30 757 452 441 415 451 420 433 747 718 687
40 848 536 511 525 511 482 480 839 810 782
50 906 617 623 623 614 574 584 899 883 861

Cap Agents MCA
MCA+DR MCA+DW MCA+DM
Group Size Group Size Group Size

1 3 5 1 3 5 1 3 5
1 20 1497 850 723 715 977 952 976 1451 1316 1252

30 1514 927 880 873 1115 1067 1138 1486 1449 1412
40 1994 1432 1406 1376 1618 1581 1696 1976 1943 1908
50 1983 1498 1469 1480 1675 1672 1769 1973 1947 1915

3 20 117 -360 -395 -396 -378 -434 -428 94 58 -21
30 924 549 510 510 535 501 516 913 890 858
40 1261 898 868 854 879 876 885 1249 1227 1199
50 1273 938 925 914 931 940 947 1266 1245 1222

5 20 748 374 357 337 298 276 286 734 689 607
30 1197 809 793 778 742 724 722 1178 1128 1082
40 1367 958 937 966 932 899 932 1347 1311 1258
50 1266 922 896 915 888 889 877 1258 1230 1208

more runtime than the decoupled approaches, we demonstrate
below that MCA and RMCA are still competitive in runtime
compared with other algorithms.

2) Anytime Improvement Methods: The second experiment
uses any time improvement algorithm to improve the solution
from RMCA(r) for 60 seconds with three neighbourhood
destroy strategies: Destroy random (DR), Destroy worst (DW)
and Destroy multiple (DM). For each destroy strategy, we
run experiments on different destroy group sizes (how many
tasks to destroy each time). The experiment is performed on
25 instances that each have 500 tasks with different capacity
values and agents’ numbers.

Table I shows the results of relative TTD of RMCA(r)/MCA
(Relative to the TTD of RMCA(r) that ignores collisions, and
the lower the better) under different anytime improvement
strategies. The results show that all of the three neighbourhood
destroy methods improve the solution quality of RMCA(r) and
MCA. We still see that MCA performs better than RMCA(r)
when capacity and number of agents are low (The relative
TTD of MCA smaller than 0 means its TTD is smaller than
TTD of RMCA(r) that ignores collisions.), even the anytime
improvement strategies can not reverse this trend. Overall,
destroy random and destroy worst performs better than destroy
multiple. This is not unexpected as simple random neigh-
bourhoods are often very competitive for large neighbourhood
search.

B. Lifelong Experiment

In this part, we test the performance of RMCA(r) in a
lifelong setting compared with the TPTS and CENTRAL
algorithms in [1]. The MAPD problem solved by TPTS and
CENTRAL assumes that each agent can carry a maximum
of one package at a time, and the objective is to minimize

TABLE II
LIFELONG EXPERIMENT ON DIFFERENT ALGORITHMS.

f Cap Agents RMCA(r) Anytime CENTRAL TPTS
TTD Makespan T/TS TTD Makespan T/TS TTD Makespan T/TS

0.2 1 20 3138 2526 0.205 4365 2528 0.364 3645 2528 0.103
30 2729 2525 0.208 3864 2527 0.762 3002 2526 0.242
40 2297 2523 0.210 3572 2527 1.300 2646 2525 0.442
50 2176 2523 0.214 3394 2525 1.945 2456 2524 0.710

3 20 3056 2526 0.207 – – – – – –
30 2661 2525 0.210 – – – – – –
40 2223 2523 0.216 – – – – – –
50 2121 2523 0.219 – – – – – –

5 20 3056 2526 0.207 – – – – – –
30 2661 2525 0.211 – – – – – –
40 2223 2523 0.217 – – – – – –
50 2121 2523 0.219 – – – – – –

2 1 20 65938 626 0.489 75294 610 0.125 82734 639 0.022
30 30317 436 0.705 37327 446 0.284 47252 490 0.099
40 13945 344 0.884 19930 376 0.426 30491 413 0.273
50 6279 300 1.022 11185 328 0.615 21853 377 0.660

3 20 17904 349 0.791 – – – – – –
30 7504 302 0.933 – – – – – –
40 4644 291 0.999 – – – – – –
50 3475 290 1.045 – – – – – –

5 20 12711 320 0.860 – – – – – –
30 7005 299 0.942 – – – – – –
40 4670 291 1.002 – – – – – –
50 3463 288 1.053 – – – – – –

10 1 20 106290 624 0.142 116357 587 0.421 125374 626 0.025
30 68166 435 0.210 76934 419 1.062 86267 462 0.086
40 49140 338 0.284 56896 337 2.426 66171 383 0.238
50 38050 280 0.362 45170 288 2.828 55409 339 0.559

3 20 52771 322 0.209 – – – – – –
30 31832 226 0.305 – – – – – –
40 21651 179 0.404 – – – – – –
50 15851 153 0.521 – – – – – –

5 20 36790 247 0.271 – – – – – –
30 21723 176 0.384 – – – – – –
40 14970 145 0.496 – – – – – –
50 11464 129 0.613 – – – – – –

the makespan. This objective is somewhat misleading when
we consider the continuous nature of the underlying problem
where new tasks arrive as the plan progresses. As a result,
minimizing TTD might be a better objective since it may help
in optimizing the total throughput of the system by trying to
make agents idle as soon as possible, whereas with makespan
minimization all agents can be active until the last time point.

At each timestep, after adding newly released tasks to the
unassigned task set Pu, the system performs RMCA(r) on
current assignments set A, and runs the anytime improvement
process on all released tasks that are not yet picked up. The
RMCA(r) uses the anytime improvement strategy of destroy
random with a group size of 5. As the anytime improvement
triggers at every timestep when new tasks arrive, and involves
all released yet unpicked up tasks, we set the improvement
time as 1 second in each run.

We generate 25 instances with 500 tasks. For each instance,
we use different task release frequencies (f ): 0.2 (release
1 task every 5 timestep), 2 and 10 (10 tasks are released
each timestep). For each task release frequency, we test the
performance of the algorithms under different agent capacities
(Cap) and different numbers of agents (Agents).

1) Result: Table II shows that RMCA(r) not only optimizes
TTD, its makespans are overall close to CENTRAL, and are
much better than TPTS. Comparing TTD, CENTRAL and
TPTS perform much worse than RMCA(r). This supports
our argument that makespan is not sufficient for optimizing
the total throughput of the system. In addition, the runtime
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TABLE III
T-TEST COMPARES RMCA(R) TO CENTRAL AND TPTS

CENTRAL TPTS
TTD Makespan TTD Makespan

t-score -17.01 -0.06 -22.43 1.83
p-value 3.47× 10−53 0.95 2.89× 10−81 0.06

per timestep (T/TS) shows that RMCA(r) gets a better solu-
tion quality while consuming less runtime on each timestep
compared with CENTRAL. A lower runtime per timestep
makes RMCA(r) better suited to real-time lifelong operations.
Furthermore, by increasing the capacity of robots, both total
travel delay and makespan are reduced significantly, which
increases the throughput and efficiency of the warehouse.

2) T-Test on TTD and Makespan: We evaluate how sig-
nificant is the solution quality of RMCA(r) with respect to
CENTRAL and TPTS by performing t-test with significance
level of 0.1 on the normalized TTD and normalized makespan
for experiments with robots’ Cap= 1. The normalized TTD
is defined as TTD·Na

Nt·f where Nt is the number of tasks,
Na is the number of agents and f is the task frequency.
This definition is based on the observation that increasing
Na decreases TTD, and increasing Nt and f increases TTD.
Similarly normalized makespan is makespan·Na·f

Nt
(where now

increasing f decreases makespan). Table III shows the t-score
and p-value for the null hypotheses that RMCA(r) and the
other methods are identical. The results show that RMCA(r)
significantly improves the normalized TTD compared with
CENTRAL and TPTS and improves the normalized makespan
compared with TPTS.

VI. CONCLUSION

In this paper, we have designed two algorithms MCA and
RMCA to solve the Multi-agent Pickup and Delivery problem
where each robot can carry multiple packages simultaneously.
MCA and RMCA successfully perform task assignment and
path planning simultaneously. This is achieved by using the
real collision-free costs to guide the multi-task multi-robot
assignment process. Further, we observe that the newly in-
troduced anytime improvement strategy improves solutions
substantially. Future work will extend the anytime improve-
ment strategies to refine the agents’ routes, and improve the
algorithms’ completeness on path planning.
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