
Iterative-Deepening Conflict-Based Search
Eli Boyarski1 , Ariel Felner1 , Daniel Harabor2 , Peter J. Stuckey2

Liron Cohen3 , Jiaoyang Li3 and Sven Koenig3

1Ben-Gurion University of the Negev
2Monash University

3University of Southern California
boyarske@post.bgu.ac.il, felner@bgu.ac.il, {daniel.harabor, peter.stuckey}@monash.edu,

{lironcoh, jiaoyanl, skoenig}@usc.edu

Abstract
Conflict-Based Search (CBS) is a leading algorithm
for optimal Multi-Agent Path Finding (MAPF).
CBS variants typically compute MAPF solutions
using some form of A* search. However, they of-
ten do so under strict time limits so as to avoid ex-
hausting the available memory. In this paper, we
present IDCBS, an iterative-deepening variant of
CBS which can be executed without exhausting the
memory and without strict time limits. IDCBS can
be substantially faster than CBS due to incremental
methods that it uses when processing CBS nodes.

1 Introduction
Multi-Agent Path Finding (MAPF) is a coordination prob-
lem which asks us to find a set of collision-free paths for
a team of mobile agents, each from its start location to
its designated goal location. MAPF is a well-known and
well-studied topic with numerous real-world applications.
For example, MAPF appears as a core challenge in auto-
mated warehouse logistics [Wurman et al., 2008], in auto-
mated parcel sortation [Kou et al., 2020], in automated valet
parking [Okoso et al., 2019], in computer games [Silver,
2006] and in a variety of other contexts [Ma et al., 2016].
Many optimal MAPF solvers exist [Yu and LaValle, 2016;
Surynek, 2018]. See also the survey by Felner et al. [2017].

Conflict-Based Search (CBS) [Sharon et al., 2015] is a
popular two-level optimal MAPF solver. The low level finds
optimal paths for the individual agents. If the paths include
collisions, the high level, via a split action, imposes con-
straints on the agents to avoid these collisions. The search
space of CBS is therefore a binary Conflict Tree (CT), which
the algorithm explores in best-first order. CBS is complete,
optimal and often highly performant; e.g., recent variants [Li
et al., 2019a; 2019b; 2019c] can solve MAPF problem in-
stances with > 100 agents. Unfortunately, all these algo-
rithms suffer from the same significant drawback — as the
search continues, they all need to store the entire search fron-
tier, i.e., the entire open-list (OPEN), in memory. In CBS vari-
ants, the number of frontier nodes is exponential in the depth
of the CT, which means that the available memory may be
exhausted long before they have an opportunity to expand a

goal node. For this reason, experiments with CBS are always
executed with short time limits of 1 to 5 minutes. From a
practical perspective, this means CBS will either find a so-
lution quickly or fail and leave the practitioner without any
recourse. There is no possibility to, e.g., allow the algorithm
to run longer.1

In this work, we first introduce Iterative-Deepening CBS
(IDCBS), a new optimal MAPF algorithm which replaces
the high-level A*-like search of CBS with a search like
IDA*’s [Korf, 1985] which is a search algorithm for expo-
nential domains that uses memory conservatively. IDCBS ex-
plores the CT using repeated depth-first iterations. Unlike A*,
Depth-First Search (DFS) only moves from a parent node to
its child and back and such nodes have many similarities in
their content. This is a substantial change that requires some
fundamental re-thinking of the CBS algorithm. Second, we
identify 6 main components required to process a high-level
CBS node and show how each one can be improved using
incremental data structures that exploit similarities between
parent nodes and their children. Third, we undertake an ex-
tensive empirical comparison which demonstrates practical
benefits. IDCBS is able to optimally solve many more prob-
lem instances than CBS and we report substantial improve-
ments in search times even for problem instances which can
be solved by a currently leading CBS variant.

2 Definitions and Background
MAPF is defined by a graph G = (V,E) and a set of k
agents {a1, . . . , ak}, where each agent ai has a start location
starti ∈ V and a goal location goali ∈ V . We assume time
is discretised into timesteps of unit size. At each timestep, ev-
ery agent can either move to an adjacent vertex or wait at its
current vertex. Moving and waiting both have a cost and, for
simplicity and w.l.o.g., we assume this cost is 1.

A path for agent ai is a sequence of move/wait actions that
takes the agent from starti to goali. We say that two agents
are in collision (equivalently, in conflict) if they attempt to oc-
cupy the same vertex at the same timestep or if they attempt
to traverse the same edge at the same timestep in different
directions. To represent vertex conflicts we use the notation

1Bounded-suboptimal variants of CBS [Barer et al., 2014] can
mitigate this issue to a limited extent, but their memory consumption
is still exponential in the depth of the CT.

Algorithm 1: High-level of CBS
1 Main(MAPF problem instance)
2 R← new CT node
3 R.constraints← {}
4 R.solution← {a shortest path for each agent}
5 R.cost← SIC(R.solution)
6 R.conflicts← Find Conflicts(R.solution)
7 Insert R into OPEN
8 while OPEN not empty do
9 N ← node with lowest f from OPEN

10 Delete N from OPEN
11 if N has no conflict then
12 return N.solution // N is a goal node
13 Classify N.conflicts into types
14 Compute N.h if it has not yet been computed
15 if N.f > lowest f in OPEN then
16 Insert N back into OPEN
17 continue
18 C ← Choose Conflict(N)
19 Children← []
20 foreach agent a in C = 〈ai, aj , v or e, t〉 do
21 N ′ ← Generate Child(N, 〈a, v or e, t〉)
22 if N ′.cost = N.cost and

|N ′.conflicts| < |N.conflicts| then
23 N.solution← N ′.solution
24 N.conflicts← N ′.conflicts
25 Children← [N]
26 break
27 Insert N ′ into Children
28 Insert Children into OPEN

29 return “No solution”
30 Generate Child(Node N , Constraint C on ai)
31 N ′ ← new CT node
32 N ′.constraints← N.constraints

⋃
{C}

33 N ′.solution← N.solution
34 CAT ← Build CAT(N.solution, i)
35 N ′.solutioni ← Low Level(ai, CAT)
36 N ′.cost← SIC(N ′.solution)
37 N ′.conflicts← Find Conflicts(N ′.solution)
38 return N ′

〈ai, aj , v, t〉 which means agents ai and aj both attempt to
occupy vertex v at timestep t. To represent edge conflicts we
use the notation 〈ai, aj , (u, v), t〉, which means agents ai and
aj attempt to swap positions by traversing edge (u, v) ∈ E at
the same timestep. A complete assignment of paths to agents
is called a solution, and any collision-free solution is a valid
solution to the MAPF problem. Our objective is to find a valid
solution whose sum-of-individual-costs (SIC), across all con-
stituent paths, is minimum.

2.1 Background: Conflict-Based Search (CBS)
CBS [Sharon et al., 2015] is a two-level MAPF algorithm.

The CBS low level computes individually-optimal short-
est paths for each agent, usually with some variant of A* run-

ning on a time-expanded graph (TEG). Each vertex vi in the
TEG is a time-indexed location; i.e, it represents the vertex
v ∈ V at timestep i. Each edge (vi, wi+1) in the TEG is
similarly time indexed; i.e. represents a move from vertex v
at timestep i to vertex w at timestep i + 1 (see Figure 1(a–
b)). During a low-level search, each agent may be subject to
a set of collision-avoiding constraints. A vertex constraint,
written 〈ai, v, t〉, prohibits agent ai from occupying vertex v
at timestep t. An edge constraint, written 〈ai, (u, v), t〉, pro-
hibits agent ai from traversing edge (u, v) at timestep t.

The CBS high level performs a best-first search on the CT,
where each node N ∈ CT is a (possibly invalid) solution
to the MAPF problem. Algorithm 1 shows its main steps.
CBS generates a CT root node with no constraints (Lines
2–6) whose solution assigns to every agent its individually-
optimal shortest path, and inserts it into OPEN (line 7). CBS
then removes the most promising node from OPEN (Lines 9-
10) and checks its solution for conflicts (Line 11). If there
are none, then the search terminates with an optimal valid
solution (Line 12). Otherwise, CBS chooses one of the re-
maining conflicts (Line 18) and resolves it. Resolving a con-
flict (Lines 19-28) means adding new conflict-avoiding con-
straints to each of the two agents and generating two new
solutions (Lines 31-38) corresponding to each of the conflict-
ing agents being assigned a new individually-optimal shortest
path, subject to its new set of constraints. Each new solution
is inserted into OPEN (Line 28), and the process continues
until a valid solution is found, or OPEN is exhausted (line
29). The CT is explored with an A*-like search guided by
f = g + h, where g is the cost of the solution and h is an ad-
missible heuristic estimate (Lines 14-17) [Felner et al., 2018].
In some cases, conflicts can be resolved without any branch-
ing by using an enhancement called bypassing [Boyarski et
al., 2015a] (Lines 26-26).

CBS decides which conflict to resolve (Line 18) by pri-
oritizing the conflicts [Boyarski et al., 2015b]. The highest
priority conflicts are cardinal conflicts; both child nodes that
are generated when cardinal conflicts are resolved have a
higher cost than the parent, as the individual path cost for
each of the conflicting agents increases. Next highest are
semi-cardinal conflicts, which increase the path cost for just
one of the conflicting agents. Last are non-cardinal conflicts,
which can be resolved without increasing any path cost. To
classify each conflict, CBS uses Multi-value Decision Dia-
grams (MDDs) [Sharon et al., 2013]. AnMDDc

i is a directed
acyclic graph that compactly stores all paths from starti to
goali of cost c for agent ai. Figure 1(e) shows an example for
paths of cost 4 from S to G under some constraints (shown
in Figure 1(c) as red crosses). We call the set of all MDD
nodes with the same timestep an MDD level. To determine
whether the path cost of agent ai must increase, CBS checks
if the conflict vertex appears in MDDc

i as the only node in
the corresponding level, or, for edge conflicts, whether both
the vertices of the conflict edge satisfy the same condition.

3 Iterative Deepening CBS (IDCBS)
Traditionally (see the papers listed above), the time limit for
MAPF experiments was set at 1–5 minutes per problem in-

Figure 1: A graph, its TEG, and the stages of building MDD4
1

Solved instances Timeouts Memory-outs Implicit fails

Group CBS IDCBS CBS IDCBS CBS IDCBS CBS IDCBS

City 442 431 3 6 3 0 0 11
Empty 361 380 0 8 8 0 19 0
Games 933 951 11 20 9 0 18 0
Mazes 128 142 2 8 6 0 14 0
Random 513 589 1 8 7 0 76 0
Rooms 167 179 1 6 5 0 12 0
Warehouse 582 599 2 8 6 0 17 0

Table 1: Solved instances (out of 3380) for CBS and IDCBS

stance. This was perhaps partly inspired by Ruml’s encour-
agement to use small benchmarks [Ruml, 2010], partly the
result of real-time requirements in some applications and
partly motivated by the need to average over many prob-
lem instances in a reasonable amount of time. However, an-
other reason to set a short time limit, probably overlooked
by most researchers, is the memory requirements of CBS.
Due to its best-first-search nature, CBS must store the entire
exponentially-growing frontier of the CT in memory. As a re-
sult, CBS usually exhausts memory after a few minutes. The
short time limit shifted the experimental spotlight away from
addressing the memory usage of CBS.

To overcome the memory issue and let CBS run longer,
we propose an iterative-deepening version of CBS, called ID-
CBS. Like CBS, IDCBS can also use an admissible heuristic
function to guide its search. For simplicity, we hereafter use
the terms CBS and IDCBS but they always include a heuristic
function. Like IDA*, IDCBS traverses the CT with f -limited
depth-first searches and sets the limit of the next search to the
lowest f -value of a CT node that was generated in the previ-
ous search but not expanded. Optimality is guaranteed by the
same proof as IDA*’s.

To demonstrate the advantages of IDCBS, we set a time
limit of 1 hour for both algorithms and iteratively solved
problem instances from the first scenario of each map in the
standard MAPF benchmark [Stern et al., 2019], adding agents
until we failed. We set the memory limit to 8GB to emulate
the amount of memory allocated per vCPU in Amazon Elastic
Compute Cloud’s memory-optimized R5 instances. Table 1
shows the results. IDCBS succeeds more often than CBS, and
never runs out of memory.

Figure 2(a) provides further insight. Here, we compare the
average memory usage (out of 8GB available) for the two
algorithms (y-axis) as a function of the CPU time required to
solve the problem instance (in buckets of 2 minutes). As CBS
runs longer, it needs more memory, while the memory needs
of IDCBS remain relatively constant. In Section 4, we show
how IDCBS can substantially shorten the CPU time per CT
node versus CBS (see Figure 2(c)), which allows IDCBS to

expand more CT nodes and find solutions faster. In Section 5,
we show that IDCBS is in general much stronger than CBS.

4 Reducing the Time-Per-Node via DFS

A modern CBS implementation performs 6 main activities:
(1) Finding low-level paths (Lines 4 and 35). (2) Building
MDDs, which represent all possible paths of the same cost
for an agent (Line 13). (3) Building the conflict avoidance ta-
ble (CAT) [Standley, 2010] which tries to steer agents away
from each other to avoid conflicts (Line 34). (4) Finding all
new conflicts that were caused by the newly-planned paths
in a CT node (Line 37). (5) Computing the h-value of a CT
node (high-level heuristic) (Line 14). And, (6) other high-
level work, i.e., queuing and node construction operations to
maintain OPEN (remaining lines).

Figure 2(b) shows the breakdown of the average time per
generated CT node of CBS to these 6 components as the num-
ber of agents increases over all problem instances that were
solved by both algorithms. Clearly, each of the components
takes a measurable part of the time, with only computing
the high-level heuristic (Component 5) and finding conflicts
(Component 4) being substantially less time-consuming than
the rest, for reasons described below.

Generating a node both under a best-first-search and un-
der a depth-first search (DFS) is done in the context of the
parent node. But there is a fundamental difference between
best-first search and DFS. Best-first search jumps around the
search tree. The internal information of a node is not passed
between successive node expansions because nodes in differ-
ent parts of the search space can be very different. Therefore,
in best-first search each node typically holds all the necessary
information in its own data structures. By contrast, DFS only
moves between parent nodes and children (and back). So, a
global current-node data structure can be maintained. When
a node is generated, we calculate and store the difference ∆
between a parent and its child and undo this ∆ when back-
tracking. In the next subsections, we exploit this idea, and
for each of the components, we introduce mechanisms that
compute the ∆ from the parent node efficiently, mostly us-
ing incremental algorithms. Incremental algorithms use the
work of previous executions to speed up solving a different
but relatively similar problem instance.

Figure 2(c) shows the same breakdown for IDCBS with
the incremental methods presented next and shows almost an
order of magnitude reduction in CPU time per node. The in-
cremental approaches have reduced all the components inde-
pendently of each other as seen in the figure. We next cover
each component in turn.

Figure 2: (a) Average memory usage of CBS and IDCBS (b,c) Average time per node over problem instances solved by both

4.1 Component 1: Finding Low-Level Paths

A single constraint is added for one agent in every CT node.
Consequently, the low-level path finding task is very simi-
lar to the last path-planning task for this agent that was per-
formed in one of the ancestors of the CT node. Therefore, ex-
ecuting the low-level search from scratch might be wasteful.
Instead, we can use incremental search algorithms; they use
information from previous similar searches to speed up the
new search. We use Lifelong Planning A* (LPA*) [Koenig
et al., 2004] for the low-level search and provide a brief
overview of LPA* next (see the original paper on LPA* for
a full description).

LPA* is an incremental version of A*. LPA* is invoked
again after vertices or edges are added to or deleted from the
graph or the costs of some of the edges change. LPA* then
replans a new path by using information from the previous
executions, thereby significantly reducing the effort needed
to plan from scratch. Like A*, LPA* maintains g(v) – the
distance from start to each vertex v. LPA* also maintains the
rhs-value of a vertex v (one-step lookahead values based on
the g-values) to be the minimum of g(v′) + c(v′, v) over all
neighbours v′ of v. A vertex is called locally consistent iff
its g-value equals its rhs-value. LPA* maintains a priority
queue OPEN which always contains exactly the locally in-
consistent vertices. LPA* expands the vertex with the low-
est key in OPEN. The key k(v) of vertex v is a vector with
two components: k(v) = [k1(v), k2(v)], where k1(v) =
min(g(v), rhs(v)) + h(v) and k2(v) = min(g(v), rhs(v))
(g- and rhs-values that have not yet been computed are ini-
tialized to ∞). Keys are compared according to k1, and, in
case of a tie, according to k2.

During it first execution, LPA* behaves like A*. A new
execution is invoked after some changes to the underlying
graph were made. In new executions, LPA* starts by first
carrying over OPEN and CLOSED from the previous execu-
tion, including the g- and rhs-values. LPA* then updates the
rhs-values of the vertices which are direct neighbors of the
changed components (e.g., edges with updated costs). It also
updates OPEN to reflect new locally consistent and inconsis-
tent vertices from this set (which is a relatively cheap opera-
tion). Then, LPA* repeatedly expands vertices until the goal
vertex is locally consistent and its key is smaller than the
smallest key in OPEN. In this case, the g-value of the goal
vertex is the cost of a shortest path from the start vertex to the
goal. This allows LPA* to focus only on locally inconsistent
vertices and it was shown that this can require less work than

running A* from scratch on the changed graph.

Using LPA* for the Low Level of CBS
Adding a constraint 〈ai, v, t〉 to a CT node N can be viewed
as deleting vertex vt from the TEG. Thus, the TEG of N is
very similar to the previous TEG which was used the last time
a path for ai was needed in an ancestor of N . This calls for
using LPA* to search the new TEG instead of using A*. How-
ever, a few modifications are in order for this scenario.

(1) LPA* assumes a single goal vertex. For example, a typ-
ical path-finding execution terminates when the presumably-
known goal vertex is locally consistent and its key is smaller
than the smallest key in OPEN. But, in a TEG, the goal lo-
cation appears in many timesteps. To enable LPA* to search
a TEG, we add a single vertex gfinal to the TEG that serves
as LPA*’s single goal vertex. Each goal vertex gt in the TEG
is connected with a zero-cost (dummy) edge to this new goal
vertex. Luckily, the low-level heuristic only takes the location
into account (the timestep is ignored), so it guides the search
toward any goal vertex, regardless of its timestep.

(2) LPA* performs better when the changes in the graph
occur closer to the goal vertex. LPA* re-expands a smaller
subtree in this case [Koenig et al., 2004]. Therefore, as a tie-
breaker (e.g., among cardinal conflicts), choose the closest
conflict to the goal vertices of the conflicting agents.

(3) To make use of a CAT, LPA* keys need a third compo-
nent k3(v), that represents the lowest number of conflicts of
a shortest path for the given agent from start to v with the
paths of other agents, as stored in the CAT. k3 is used in case
there is a tie with respect to both k1 and k2.

Updating k3(v) for all vertices of the LPA* instances of
all other agents each time the path of an agent is replanned
would be too costly, because those LPA* instances would
then have to propagate the cost changes down their trees.
So, the k3(v) values are only updated lazily, when a vertex
is modified for another reason. As a result, k3(v) may be out
of date if the paths of other agents have changed since k3(v)
was computed in a previous execution of LPA*. In this case,
v has remained locally consistent since then, and k3(v) has
not been recomputed. This can cause LPA* to find paths with
new non-cardinal or semi-cardinal conflicts that could have
been avoided if k3(v) had been fully up-to-date.2

2This only happens for LPA* because it reuses information. It
would not happen for A* as it runs from scratch considering the
current paths of the other agents.

This problem is mitigated by continuing the LPA* exe-
cution until all paths of the same cost are found and using
the path with the smallest number of conflicts by consult-
ing the CAT. However, this is only done when the CT node
has no cardinal conflicts, because, when a cardinal conflict is
resolved, other conflicts are likely to be indirectly resolved
and this process would be redundant. An additional way to
mitigate this problem is to use the Bypassing Conflicts (BP)
enhancement [Boyarski et al., 2015a] (Lines 26-26 of Al-
gorithm 1). BP resolves some non-cardinal or semi-cardinal
conflicts without increasing the depth of the CT. When a child
CT node is found to have the same sum of costs as its par-
ent, and fewer conflicts, the replanned path is copied into the
parent node, replacing the the path of the agent in the par-
ent node. The updated parent node is then be re-inserted into
OPEN, and the child node is discarded. BP is crucial in ID-
CBS because it further handles the issue of increased numbers
of non-cardinal and semi-cardinal conflicts.

4.2 Component 2: Building MDDs
Recall that CBS builds MDDc

i in the context of CT node
N , taking the constraints on agent ai into account. Build-
ingMDDc

i non-incrementally is implemented as a two-stage
process with forward and backward searches. First, a for-
ward A* search over the TEG is executed from start0i un-
der the constraints that are imposed on agent ai. Backward
MDD edges from each node back to all of its possible par-
ents are constructed. This search does not stop when goalci
is expanded, but continues to expand all nodes v such that
f(v) ≤ c and does not generate nodes v such that f(v) > c.
At the end of this stage, we have generated all nodes v with
f(v) ≤ c, even if they are not part of a path of cost c to
the goal vertex. Such surplus nodes are pruned next. Second,
a backward breadth-first search is performed over the nodes
generated in the forward search. The search starts from goalci
and generates forward MDD edges to goalci from all nodes vt
for which (1) (v, goali) ∈ E and (2) t = c − 1. The search
continues backward in this way until start0i is reached. All
generated nodes that do not have forward edges (from the
backward search) connected to them at the end of the back-
ward search are repeatedly deleted, and the resulting doubly-
connected structure is MDDc

i .
Figures 1(c–e) show the stages of building an MDD of

depth 4 for agent a1 from vertex S to vertex G on the graph
in Figure 1(a). In this example, assume that another agent
is planned to pass through ai’s goal vertex, taking a unidi-
rectional edge into vertex X2 from some other vertex in the
graph (not in the figure), moving from X2 to G3, and tak-
ing a unidirectional edge out of G3 and exiting the example.
CBS has eventually added vertex constraints for a1 on X and
timestep 2 and on G and timestep 3, and an edge constraint
on moving in the opposite direction from G to X at timestep
2 (red crosses). Figure 1(c) shows all nodes that were gener-
ated at the end of the first stage. Figure 1(d) shows the result
of the second stage. Figure 1(e) shows the MDD that resulted
from pruning all nodes that do not lead to G4

1 (i.e., G2
1).

This two-phase process is relatively time-consuming. It is
especially problematic when CBS uses a high-level heuristic,
because MDDs are needed for every agent that has a vertex in

the conflict graph (see below). Moreover, when a new MDD
is needed due to new constraints, CBS builds it from scratch.
IDCBS mitigates this issue as follows. When using LPA* for
the low-level search, the MDD can be quickly constructed.
Every time LPA* halts with a new path, for every node v with
k(v) < k(goal), g(v) is equal to the true distance from the
start vertex to v. So, when a new MDD is needed, IDCBS
resumes the LPA* execution for agent ai, now expanding all
nodes v with k(v) = k(goal) and finishing the forward search
part of building the MDD with very little effort. IDCBS then
performs a similar backward search to complete the MDD.
Thus, not only is most of the forward search effort saved, but
also the pruning effort in the backward search, because LPA*
keeps all nodes for its next execution.

4.3 Component 3: Building the CAT
Consider a CT node where a path for agent ai is needed
by CBS. A Conflict-Avoidance Table (CAT) [Standley, 2010]
holds the location-time pairs that make up the paths of all
other agents in the CT node. While replanning a path for agent
ai, the low level of CBS uses the CAT to break ties among
paths of the same cost in favor of paths that cause fewer con-
flicts with the current paths of the other agents as given by
the CAT. Because the size of the CAT is relatively large, it is
usually built from scratch for every new CT node, mainly to
save memory (Line 34 in Algorithm 1).

In IDCBS, instead of building the CAT from scratch each
time a low-level search is invoked, a single global CAT is
maintained. This table holds location-time pairs of the paths
of all agents in the current CT node. The CAT is initialized
with the paths in the root node of the CT. Every time a CAT
is needed, the path that is going to be replanned is removed
from the CAT. Then, when the low-level search finishes, the
newly-planned path is incorporated into the CAT and the DFS
continues. When the DFS backtracks, the same is done in re-
verse. Thus, for a problem instance with k agents, one path is
removed from the CAT once and inserted into it once, instead
of k paths being inserted into a newly generated CAT for each
new CT node.

4.4 Component 4: Finding New Conflicts
Since in both best-first search and DFS traversals, the child
CT node is constructed from its parent, some parts of CBS are
typically already implemented in an incremental way. When
a new CT node is generated, only the newly-planned paths are
checked for conflicts with all other paths. The conflicts be-
tween the paths that remain unchanged are carried over from
the new parent of the new node.

4.5 Component 5: Computing The Heuristic
For each CT node N , the size of the minimum vertex cover
(MVC) of a corresponding cardinal-conflict graph is used as
an admissible h-value for the remaining cost to reach a goal
CT node in the subtree rooted at N [Felner et al., 2018]. The
h-value of the root node is computed from scratch. Children
of a CT node with an MVC of size k only need to check
whether their MVC is of size k − 1 and possibly also k. Oth-
erwise, it is k + 1 [Felner et al., 2018]. We tried a differ-
ent approach of using a Mixed Integer Programming (MIP)

#agents 10 20 30 40 50 70 90
#instances 62 55 44 37 27 13 9

Average Number of Generated Nodes (in 1000x)

CBS 6.2 33.0 22.5 16.0 7.4 18.2 4.8
IDCBS 17.9 9.1 15.8 14.3 14.1 223.4 2.6

Table 2: Average number of generated nodes for CBS and IDCBS

model to directly compute the MVC. Modern MIP solvers
reuse information from previous computations. We exploited
this property by maintaining the same MIP model and adding
or removing edges from the cardinal conflict graph as needed,
which sped up the execution. We used Gurobi Optimizer as
the MIP solver. It turned out that this is far faster than the
previous approach, so we use it for both CBS and IDCBS
throughout our experimentation.

4.6 Component 6: High-Level Work

Maintaining a stack is cheaper than maintaining a priority
queue, so this runtime activity is also faster in IDCBS.

5 Experimental Results

All experiments were run on a Linux laptop with an Intel Core
i7-8650U CPU running at 1.9GHz. CBS and IDCBS were
implemented in the same C++ code base.

To compare CBS and IDCBS, we experimented on the
MAPF benchmark [Stern et al., 2019], which contains 32
grids with different attributes (city maps, grids with random
obstacles, mazes, warehouse maps, etc.), each with a num-
ber of scenarios (i.e., start and goal locations for up to 7,000
agents). We increased the number of agents on the first sce-
nario of each grid for each algorithm until we reached the run-
time limit (1 hour) or memory limit (8GB). For higher num-
bers of agents the outcome of the algorithm was considered
an implicit fail.

Table 1 (page 3) shows the number of solved problem in-
stances and number of different failures for CBS and IDCBS.
Out of 3380 problem instances, 190 were solved by IDCBS
but not by CBS, 45 were solved only by CBS and not by
IDCBS, and 64 were not solved by either algorithm. This dif-
ference is statistically significant (McNemar’s Test produces
χ2 = 89.5).

To the best of our knowledge, these 190 problem instances
have never been solved optimally before. Table 2 compares
the average number of nodes generated by CBS and IDCBS.
Similarly to IDA*, on exactly the same CT, IDCBS generates
more CT nodes than CBS. In practice, however, IDCBS gen-
erated fewer CT nodes than CBS in some cases because ID-
CBS uses different low-level path finding (A* versus LPA*)
and chooses conflicts differently. So, their CTs can be dif-
ferent. Figure 3 shows the average runtime over all problem
instances that were solved by both CBS and IDCBS on a log-
arithmic scale. IDCBS outperforms CBS in its CPU time by
up to two orders of magnitude.

Figure 3: Average runtime of CBS and IDCBS

6 Summary and Conclusions
CBS is a memory-intensive algorithm since its implementa-
tions typically store a significant amount of information for
each CT node in its search frontier. This has gone largely un-
noticed since the practice has been to run CBS for very short
time limits only. In this work, we have presented a memory-
efficient version of CBS using iterative deepening and incre-
mental algorithms to update data.

There is a huge scope for future work. In particular, we
need to compare different types of traversals of the CT: for
example, to discover when iterative deepening depth-first
search is preferable to best-first search and to experiment
with other traversals, such as depth-first branch and bound.
Also, since we made the exploration of CT nodes significantly
cheaper for IDCBS than for CBS, we need to re-visit many of
the design choices of CBS that were handled in this paper.
We should investigate how incremental data structures affect
other CBS variants, such as ECBS [Barer et al., 2014], Lazy
CBS [Gange et al., 2019], CBS with Priorities (CBSwP) and
Priority-Based Search (PBS) [Ma et al., 2019].

Building efficient implementations of CBS and IDCBS is
a substantial undertaking of algorithmic engineering, as de-
scribed in this paper. The code is available on the mapf.info
website and at https://github.com/eli-b/idcbs.

Acknowledgements
The research at Ben-Gurion University of the Negev was sup-
ported by the Israel Ministry of Science, ISF grant 844/17
and BSF grant 2017692. The research at the University of
Southern California was supported by NSF grants 1409987,
1724392, 1817189, 1837779 and 1935712, as well as a gift
from Amazon.

References
[Barer et al., 2014] Max Barer, Guni Sharon, Roni Stern, and

Ariel Felner. Suboptimal variants of the conflict-based
search algorithm for the multi-agent pathfinding problem.
Proceedings of the Annual Symposium on Combinatorial
Search (SoCS-2014), pages 19–27, 2014.

[Boyarski et al., 2015a] Eli Boyarski, Ariel Felner, Guni
Sharon, and Roni Stern. Don’t split, try to work it out: By-

passing conflicts in multi-agent pathfinding. In Proceed-
ings of the International Conference on Automated Plan-
ning and Scheduling (ICAPS-2015), pages 47–51, 2015.

[Boyarski et al., 2015b] Eli Boyarski, Ariel Felner, Roni
Stern, Guni Sharon, David Tolpin, Oded Betzalel, and
Eyal S. Shimony. ICBS: Improved conflict-based search
algorithm for multi-agent pathfinding. In Proceedings
of the International Joint Conference on Artificial Intel-
ligence (IJCAI-2019), pages 740–746, 2015.

[Felner et al., 2017] Ariel Felner, Roni Stern, Solomon Eyal
Shimony, Eli Boyarski, Meir Goldenberg, Guni Sharon,
Nathan Sturtevant, Glenn Wagner, and Pavel Surynek.
Search-based optimal solvers for the multi-agent pathfind-
ing problem: Summary and challenges. In Proceedings of
the Annual Symposium on Combinatorial Search (SoCS-
2017), pages 29–37, 2017.

[Felner et al., 2018] Ariel Felner, Jiaoyang Li, Eli Boyarski,
Hang Ma, Liron Cohen, T. K. Satish Kumar, and Sven
Koenig. Adding heuristics to conflict-based search for
multi-agent path finding. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-2018), pages 83–87, 2018.

[Gange et al., 2019] Graeme Gange, Daniel Harabor, and
Peter J. Stuckey. Lazy CBS: Implicit conflict-based search
using lazy clause generation. In Nir Lipovetzky, Eva On-
aindia, and David Smith, editors, Proceedings of the Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS-2019), pages 155–162. AAAI Press, 2019.

[Koenig et al., 2004] Sven Koenig, Max Likhachev, and
David Furcy. Lifelong planning A*. Artificial Intelligence,
155(1-2):93–146, 2004.

[Korf, 1985] Richard Korf. Depth-first iterative-deepening:
An optimal admissible tree search. Artificial Intelligence,
27(1):97–109, 1985.

[Kou et al., 2020] Ngai Meng Kou, Cheng Peng, Hang Ma,
T. K. Satish Kumar, and Sven Koenig. Idle time optimiza-
tion for target assignment and path finding in sortation cen-
ters. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI-2020), 2020.

[Li et al., 2019a] Jiaoyang Li, Ariel Felner, Eli Boyarski,
Hang Ma, and Sven Koenig. Improved heuristics for multi-
agent path finding with conflict-based search. In Proceed-
ings of the International Joint Conference on Artificial In-
telligence (IJCAI-2019), pages 442–449, 2019.

[Li et al., 2019b] Jiaoyang Li, Daniel Harabor, Peter J
Stuckey, Hang Ma, and Sven Koenig. Disjoint splitting
for multi-agent path finding with conflict-based search.
In Proceedings of the International Conference on Au-
tomated Planning and Scheduling (ICAPS-2019), pages
279–283, 2019.

[Li et al., 2019c] Jiaoyang Li, Daniel Harabor, Peter J.
Stuckey, Hang Ma, and Sven Koenig. Symmetry-breaking
constraints for grid-based multi-agent path finding. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
(AAAI-2019), pages 6087–6095, 2019.

[Ma et al., 2016] Hang Ma, Sven Koenig, Nora Ayanian,
Liron Cohen, Wolfgang Hönig, T. K. Satish Kumar, Tansel
Uras, Hong Xu, C. Tovey, and G. Sharon. Overview: Gen-
eralizations of multi-agent path finding to real-world sce-
narios. In IJCAI-16 Workshop on Multi-Agent Path Find-
ing, 2016.

[Ma et al., 2019] Hang Ma, Daniel Harabor, Peter J. Stuckey,
Jiaoyang Li, and Sven Koenig. Searching with consistent
prioritization for multi-agent path finding. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI-
2019), pages 7643–7650. AAAI Press, 2019.

[Okoso et al., 2019] Ayano Okoso, Keisuke Otaki, and
Tomoki Nishi. Multi-agent path finding with priority for
cooperative automated valet parking. In Proceedings of
the IEEE Intelligent Transportation Systems Conference
(ITSC-2019), pages 2135–2140, 2019.

[Ruml, 2010] Wheeler Ruml. The logic of benchmarking: A
case against state-of-the-art performance. In Proceedings
of the 3rd Annual Symposium on Combinatorial Search
(SoCS-2010), pages 142–143, 2010.

[Sharon et al., 2013] Guni Sharon, Roni Stern, Meir Gold-
enberg, and Ariel Felner. The increasing cost tree search
for optimal multi-agent pathfinding. Artificial Intelligence,
195(Supplement C):470 – 495, 2013.

[Sharon et al., 2015] Guni Sharon, Roni Stern, Ariel Fel-
ner, and Nathan R Sturtevant. Conflict-based search for
optimal multi-agent pathfinding. Artificial Intelligence,
219:40–66, 2015.

[Silver, 2006] David Silver. Cooperative pathfinding. In
Steve Rabin, editor, AI Game Programming Wisdom 3,
pages 99–111. 2006.

[Standley, 2010] Trevor Standley. Finding optimal solutions
to cooperative pathfinding problems. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI-2010),
pages 173–178, 2010.

[Stern et al., 2019] Roni Stern, Nathan R. Sturtevant, Ariel
Felner, Sven Koenig, Hang Ma, Thayne T. Walker,
Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish
Kumar, Roman Barták, and Eli Boyarski. Multi-agent
pathfinding: Definitions, variants, and benchmarks. In
Proceedings of the Annual Symposium on Combinatorial
Search (SoCS-2019), pages 151–159, 2019.

[Surynek, 2018] Pavel Surynek. A summary of adaptation
of techniques from search-based optimal multi-agent path
finding solvers to compilation-based approach. CoRR,
abs/1812.10851, 2018.

[Wurman et al., 2008] Peter R. Wurman, Raffaello
D’Andrea, and Mick Mountz. Coordinating hun-
dreds of cooperative, autonomous vehicles in warehouses.
AI Magazine, 29(1):9–19, 2008.

[Yu and LaValle, 2016] Jingjin Yu and Steven M. LaValle.
Optimal multirobot path planning on graphs: Complete al-
gorithms and effective heuristics. IEEE Transactions on
Robotics, 32(5):1163–1177, Oct 2016.

