
Efficient and Exact Public Transport Routing via a Transfer Connection Database

Abdallah Abuaisha, Mark Wallace, Daniel Harabor, Bojie Shen
Department of Data Science and Artificial Intelligence, Monash University, Australia

{abdallah.abuaisha, mark.wallace, daniel.harabor, bojie.shen}@monash.edu

Abstract

We explore the earliest arrival time problem in public trans-
port journey planning. A journey typically consists of mul-
tiple scheduled public transport legs. The actual time re-
quired to transfer between these legs can substantially influ-
ence route planning. Therefore, we properly model transfers
by incorporating their exact costs. We then introduce a novel
oracle-based routing algorithm that constructs an efficient
transfer database, considering the proposed transfer model.
The database is leveraged online to quickly reconstruct the
optimal journey in response to an earliest arrival time query.
Our experimental results show that neglecting exact transfer
costs often lead to either infeasible or suboptimal route plans.
Furthermore, the findings highlight the efficiency of our al-
gorithm in handling queries, demonstrated by response times
within mere microseconds.

Introduction
We study the earliest arrival time problem in public transport
routing, a well-known research problem in the literature. A
public transport journey consists of one or more scheduled
trips. Most works in the literature assume uniform transfer
cost when changing vehicles within stations and/or between
nearby stations. However, the actual time required to trans-
fer between stops can have a large impact on the feasibil-
ity of the connection and the arrival time at the destination.
In Figure 1, we show results from an experiment involving
trip planning for the metropolitan area of Paris. We opti-
mally solve 40,000 queries throughout a single day, mod-
elling transfer costs in three different ways: exact, min, and
max. The figure shows that underestimating transfer costs
using min produces infeasibility for around 35% of journeys.
Meanwhile, max introduces unnecessary delays for around
45% of all queries, in some cases up to several hours. Other
fixed transfer time models produce similar results. Clearly,
exact transfer costs are preferable.

In public transport routing, a central server is typically re-
sponsible for managing a high volume of queries from pas-
sengers across the network. Effective algorithms in the space
must respond to such queries as quickly as possible. Many
works exist on this topic, including a group of algorithms
which are fast enough for practical applications (Geisberger

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Illustration of arrival time difference when adopt-
ing different models for transfer costs. Three variants are
explored: exact, minimum, and maximum transfer costs
(within and between stations). We run 40,000 queries over
a single day on the Paris metropolitan network, covering
trains, trams, buses, and limited walking.

2010; Bast et al. 2010; Dibbelt et al. 2018; Delling, Pajor,
and Werneck 2015; Delling et al. 2015). Unfortunately, these
works do not delve into the details of transfer modelling. In-
stead, they opt for simplified models that assume uniform
transfer costs within and/or between stations, although some
of them could be adapted to handle variable transfer costs.
A different group of algorithms also exists that allows for
unlimited walking within the network and can compute op-
timal solutions with exact transfer costs (Phan and Viennot
2019; Delling et al. 2013; Giannakopoulou, Paraskevopou-
los, and Zaroliagis 2019). However, this advantage comes at
the expense of more complicated algorithms and consider-
ably slower query times.

In this paper, we present a new approach for public trans-
port routing which produces optimal solutions with exact
transfer costs, similar to algorithms in the second group.
Suitable for deployment in a centralised context, our ap-
proach is two to three orders of magnitude faster than the
state-of-the-art algorithms in the first group. More specifi-
cally, our main contributions are: (i) introducing a novel al-
gorithm that solves the earliest arrival time problem, both

Proceedings of the Seventeenth International Symposium on Combinatorial Search (SoCS 2024)

2

accurately and efficiently; (ii) demonstrating the importance
of modelling transfers using exact transfer costs; and (iii)
proposing an efficient method for building a compressed
database of optimal journeys in a public transport network.
Our algorithm consists of two phases. In the offline phase,
we build an efficient database of all optimal journeys, con-
sidering exact transfer times. The database encodes the first
segment on the optimal journeys for each origin-destination
(OD) pair across the different departure times. In the on-
line phase, this database is utilised to quickly reconstruct the
optimal journey that answers an earliest arrival time (EAT)
query. Our experiments highlight the efficiency of our algo-
rithm. Furthermore, the results emphasise the importance of
adopting exact transfer models in providing feasible optimal
solutions compared to simplified models.

Background
Timetable is the main input for any public transport jour-
ney planning system. Similar to existing works (Dibbelt
et al. 2018; Delling, Pajor, and Werneck 2015), we model
the timetable by directly utilising its structure, rather
than constructing a graph. We represent a timetable as
TB = {P,C, T, S, F} with stops P , connections C, and
trips T . Stations S and footpaths F are introduced to
better model the transfers. A stop p ∈ P is a departure
and/or arrival point where a transport vehicle stops to
pick up and/or drop off passengers. A typical example
of a stop is a platform in a train station or a shelter in a
bus stop. A connection c ∈ C is represented as a 5-tuple
(pdep, τdep, parr, τarr, t), indicating an event in which a
transport vehicle departs from stop pdep ∈ P at time τdep
and arrives at stop parr ∈ P at time τarr via trip t ∈ T ,
without any intermediate halt between the two stops. Note
that pdep ̸= parr and τdep < τarr always hold. A trip t ∈ T
corresponds to a scheduled transport vehicle that visits a
specific order of stops. Such trip can be represented by
a sequence of connections ⟨c0, c1, . . . , ck⟩ satisfying the
following conditions: (i) t(c0) = t(c1) = . . . = t(ck); (ii)
pdep(ci) = parr(ci−1); and (iii) τdep(ci) ≥ τarr(ci−1),
for all i ∈ {1 . . . k}. Note that we frequently use the
notation a(b) throughout the paper, denoting “a of b”,
unless otherwise stated. For instance, t(ci) corresponds
to the trip of connection ci. A station s ∈ S is formed
by a group of nearby stops which serve the same public
transport mode and share a unique common name. These
stops are then called the child stops of s, denoted as
p(s) = {p1, p2, . . . , pn} ⊆ P . A footpath f ∈ F is
represented as f = (pi, pj , δτ(pi→pj)), which indicates
the possibility of transferring (i.e., walking) from stop pi to
stop pj , with a transfer duration of δτ(pi→pj). Following
previous works (Dibbelt et al. 2018; Delling, Pajor, and
Werneck 2015), we naturally assume that footpaths in public
transport networks satisfy the transitive closure property.
This property implies that if there exists a sequence of
footpaths between two locations, then the network must also
include a direct footpath between these locations. Formally,
for all pu, pv ∈ P , if there exists p0, p1, . . . , pn such that
(pu, p0, δτ(pu→p0)), (p0, p1, δτ(p0→p1)), . . . , (pn, pv, δτ
(pn→pv)) ∈ F , then (pu, pv, δτ(pu→pv)) ∈ F . The details

of footpath modelling will be discussed later.
In the context of public transport routing, the specific

commencing (concluding) stop at the origin (destination)
station typically holds minimal significance for users. Based
on this observation, we define our queries on a station-level.
Given an EAT query q = (so, sd, τq), our objective is to
identify a feasible journey J that departs from the origin sta-
tion so no earlier than time τq and arrives at the destination
station sd as early as possible. Such journey J from so to
sd consists of a sequence of connections J = ⟨c0, . . . , cn⟩,
where pdep(c0) ∈ p(so) and parr(cn) ∈ p(sd). For every
two consecutive connections, they either share the same trip
t ∈ T (i.e., do not involve a vehicle change), or else require a
transfer via a footpath f ∈ F . As footpaths F are transitively
closed, a transfer never requires more than one footpath.
For two connections between which a transfer is required,
the transfer must be feasible respecting the required transfer
time. Formally, τarr(ci−1) + δτ(parr(ci−1)→pdep(ci)) ≤
τdep(ci) must always hold for all i ∈ {1 . . . n}.

Connection Scan Algorithm (CSA) CSA is a state-of-
the-art online algorithm designed to mainly address the ear-
liest arrival time problem (Dibbelt et al. 2018). CSA as-
sembles all connections from a timetable TB into a single
array C, sorted by their departure times (i.e., from earliest
to latest). This enables CSA to efficiently answer queries by
scanning through the sorted C array. Given an EAT query
with a departure time τq , CSA maintains an array EA to
store the tentative earliest arrival time for each stop p ∈ P .
Initially, EA at the source is set to τq , while it is set to
infinity for all other stops. The algorithm then proceeds
to scan all connections in C that depart after τq in order.
For each scanned connection c, the algorithm first checks
its reachability. A connection is considered reachable if
there exists a way to catch it on time (i.e., EA[pdep(c)] ≤
τdep(c)). If the connection is reachable, the algorithm up-
dates EA for the arrival stop parr(c). It also accounts for
transfers, updating EA for each reachable stop pj via a
footpath f = (parr(c), pj , δτ(parr(c)→pj) as EA[pj] =
min(EA[pj], τarr(c) + δτ(parr(c)→pj)). However, if the
connection c is not reachable, the algorithm simply skips it
and proceeds to the next one. Finally, at the end of the scan-
ning process, the algorithm returns EA at the destination. To
extract full journeys, the algorithm is augmented by journey
pointers or a post-processing phase is performed.

Transfers Modelling
One important aspect of modeling public transport networks
is transfers where passengers change vehicles during their
journey. Modeling the details of transfers vary significantly
across the literature. Unexpectedly, this can have a great im-
pact on the quality and feasibility of the solutions (as shown
in the experiments sections). We noticed that transfer models
in most existing works can be divided into two main types:
(i) intra-station model where transfers only occur between
stops within stations, either at no cost or at a uniform station-
specific transfer time; and (ii) inter-station model where
transfers can in addition happen between nearby stations,
considering only a uniform transfer time for each station

3

pair. Both transfer models assume uniform transfer times,
which can lead to the computation of infeasible or subopti-
mal solutions. On the other hand, there exists another type
that incorporates variable transfer times by creating a com-
prehensive walking graph that connects all stops in P . Nev-
ertheless, the computational burden and query time signifi-
cantly increase for such a model due to the extensive integra-
tion of footpaths within this unrestricted walking scenario.
To overcome the limitations of the existing transfer models,
we propose our transfer model.

Our Model In public transport networks, transfers be-
tween stops within a station are essential. Therefore, our
model first includes a footpath between every pair of stops
that belong to the same station. Our model determines the
exact transfer time of each footpath. To enable transfers be-
tween stops belonging to different stations, our model is
built on the assumption that the majority of users are willing
to walk a reasonable distance for the purpose of transfer-
ring. Specifically, we impose a global range limit that re-
stricts transfers within a predefined radius r. For any sta-
tion sj ∈ S that is located within r from a given station
si ∈ S, a footpath from each stop in p(si) to each stop in
p(sj) is constructed considering the exact required transfer
time. Due to the transitive closure property, we incorporate
extra footpaths to ensure the completeness of the network.
Such footpaths must always satisfy the triangle inequality
theorem. Finally, given the modeled footpaths F , we asso-
ciate each station s ∈ S with a list of the neighbouring sta-
tions, n(s) = {s1, s2, . . . , sm} ⊆ S, to which there exists at
least one footpath from s.

Transfer Connection Database (TCD)
Our approach, is centered around the key idea inspired by
the Compressed Path Database (CPD) (Botea 2011; Botea
and Harabor 2013), a state-of-the-art algorithm for finding
shortest paths in road networks. The CPD serves as an or-
acle that forgoes the conventional state-space search, and
instead extracts the shortest path using precomputed first
move1 data. However, unlike static road networks, where
storing only one optimal first move for any OD pair is suf-
ficient and can be simply computed via a Dijkstra search,
extending the concept of CPD into a public transport net-
work is not a trivial task. First, public transport networks
are inherently time-dependent, with varying schedules and
travel times. Therefore, the stored optimal path data must
consider all potential departure times. This problem further
intensifies when considering transfers between stops. Fur-
thermore, while it is true that each stop is associated with
a finite number of connections or trip departures, there may
exist several stops within each station, making it challeng-
ing to efficiently compute and store the optimal path data
between two stations. Finally, despite the fact that the first
move concept can be extended to store the first connection
on an optimal path, there may exist many connections along
the same path. This complexity may affect the retrieval of

1The first move data CPD[o, d] reveals the identity of the first
edge on the optimal path from any origin o to any destination d.

the full path. To overcome these challenges, we present our
solution, Transfer Connection Database (TCD), an oracle-
based approach that efficiently answers the EAT queries by
storing the first transfer connection on the optimal paths for
all OD station pairs. Our solution comprises two phases, of-
fline preprocessing phase and online query phase.

Transfer Connections
Recall that a journey from an origin station to a destination
station consists of a set of connections. The number of con-
nections can be large, especially if the two stations are far
apart. For most oracle-based approaches in route planning
(Abraham et al. 2011; Bast et al. 2010; Samet, Sankara-
narayanan, and Alborzi 2008), extracting a complete solu-
tion often requires a step-by-step processing. As a result, the
efficiency of the oracle is contingent on the representation
of the solution, and enhancing this representation can sig-
nificantly boost the performance (Shen et al. 2021). Fortu-
nately, unlike road networks, where maintaining every edge
along an optimal path is essential for successful navigation,
public transport networks operate differently. In the latter, a
journey connecting two stations depends on the trips sched-
uled in the timetable, where each trip must serve a specific
sequence of stops. Consequently, the critical importance of
a journey lies in preserving the information of transfers be-
tween different trips, since the connections within the same
trip can be followed effortlessly. Based on this observation,
we propose the concept of transfer connections.
Definition 1. (Transfer Connection) Considering a jour-
ney J = ⟨c0, c1, . . . , cn⟩, a sub-sequence of connec-
tions ⟨cj , cj+1, . . . , cj+k⟩ ⊆ J forms a transfer connec-
tion tc, iff (i) these connections share the same trip (i.e.,
t(cj) = t(cj+1) = . . . = t(cj+k)); and (ii) each of
the preceding connection cj−1 and following connection
cj+k+1, if they exist, serves a different trip (i.e., t(cj−1) ̸=
t(cj) ̸= t(cj+k+1)). To represent tc, we use the tuple tc =
(cdep, carr), where cdep = cj and carr = cj+k.

As a result, a journey J can be represented as a set of
transfer connections J = ⟨tc0, tc1, . . . , tcm⟩. This repre-
sentation reduces the number of journey elements, enabling
faster full journey reconstruction when answering queries.

Offline Preprocessing
During the offline phase, TCD utilises the concept of trans-
fer connections to construct an oracle, called first transfer
table (FT). This table stores labels encoding the first trans-
fer connection on each optimal journey in the network.

First Transfer Table To support EAT queries, the oracle
must have the ability to identify the first transfer connec-
tion for any given OD station pair, considering any possible
departure time. However, precomputing such oracle is chal-
lenging due to the uncertainty associated with the query’s
departure time. Fortunately, in public transport networks, a
key observation is that any optimal journey from an origin
station so to any other destination station sd must initiate
from a connection departing either (i) directly from a stop
pi ∈ p(so), or (ii) from a stop pj that belongs to a neigh-
bouring station in n(so), accessible from so via a footpath.

4

Motivated by this, it suffices to consider only the depar-
ture times encoded by the accessible connections from so. A
straightforward way to build the oracle involves maintaining
an |S| × |S| FT table, where the rows correspond to ori-
gin stations and the columns correspond to destination sta-
tions, and |S| is the number of stations. However, such table
is unlikely to be built efficiently and may contain many re-
dundant labels across the rows. This is because, to store the
labels for a row si, we must consider all accessible connec-
tions departing from stations si∪n(si), resulting in repeated
labels computation and storage. To overcome this issue, we
propose the idea of neighbourhood stations which leverages
the clustering nature of public transport networks.
Definition 2. (Neighbourhood Station) Given a timetable
TB, a set of stations in S forms a neighbourhood station
NS, iff all station pairs in NS are connected by footpaths
in F (i.e., ∃f(pi, pj , δτ(pi→pj)) ∈ F ∀pi, pj ∈ NS).
Lemma 1. Given a timetable TB, stations in S can be de-
composed into a set of independent neighbourhood stations
S = {NS0, NS1, . . . , NSn}, such that there exist no foot-
paths between neighbourhood stations (i.e., ∀pi ∈ NSi and
∀pj ∈ NSj , ∄f(pi, pj , δτ(pi→pj)) ∈ F).

Proof. (Sketch) Given two neighbourhood stations NS1 =
{si, sj} and NS2 = {sk, sl}. Assume there exists a foot-
path from a stop in p(si) to a stop in p(sk), then due to
the transitivity closure property, there must exist footpaths
connecting all stop pairs between si and sk, and eventually
between NS1 and NS2. As a result, NS1 and NS2 must
be merged to form a new neighbourhood station. Thus, the
lemma holds.

Following Lemma 1, we decompose the stations in S into
a set of neighbourhood stations NS . Subsequently, we re-
vise the oracle into an |NS| × |S| FT table, where rows
represent origin neighbourhood stations and columns repre-
sent destination stations, and |NS| is the number of neigh-
bourhood stations. The revised FT table reduces both pre-
processing time and space requirements. Within each cell
FT [NSo][sd], we store a list of labels {l0, l1, . . . , ln}, where
each label li signifies the first transfer connection tci on
an optimal journey from one of the stations in NSo to
station sd. To ensure efficient query processing, labels in
FT [NSo][sd] are sorted by the arrival time (at sd) of their
corresponding journey. While it is possible, in the worst-case
scenario, for all stations to be grouped into a single neigh-
bourhood station, this is typically not the case in practice.
Example 1. Figure 2 shows a toy network where stations
are decomposed into neighbourhood stations based on the
footpaths extending between their stops. Stations s1 and s2,
as well as stations s4 and s5 are grouped into neighbour-
hood stations NS1 and NS3, respectively. Meanwhile, s3
is isolated, forming its own neighbourhood station NS2.
The neighbourhood stations are independent having no foot-
paths between them. Simultaneously, all stop pairs within
each neighbourhood station are connected via footpaths.
Table 1 shows the FT table for this network, where rows
represent origin neighbourhood stations and columns rep-
resent destination stations. Each cell FT [NSo][sd] stores

Figure 2: A toy network consisting of nine stops in five sta-
tions. The bidirectional arrows represent footpaths between
stops with their walking time. Six trips are shown, each in a
unique colour. Each coloured arrow represents a connection
from pdep to parr stops, in the form ci = (τdep, τarr, t)

O\D s1 s2 s3 s4 s5

NS1

(c12, c12)
(c7, c7)
(c6, c6) (c4, c4)

(c6, c6)
(c4, c6)
(c7, c7)

(c7, c8)
(c4, c4)
(c6, c6)

(c7, c8)
(c4, c4)
(c6, c6)

NS2

(c5, c5)
(c10, c12)

(c5, c5)
(c10, c10) -

(c8, c8)
(c9, c9)

(c8, c8)
(c9, c11)

NS3

(c3, c5)
(c2, c2)
(c1, c2)

(c3, c5)
(c2, c2)
(c1, c2)

(c2, c2)
(c1, c2)
(c3, c3) (c1, c1)

(c3, c3)
(c2, c2)

(c11, c11)

Table 1: The FT table for the toy network

the list of the first transfer connections for all optimal jour-
neys from NSo to sd. For instance, the label (c1, c2) in
FT [NS3][s2] is the first transfer connection of the journey
J = ⟨(c1, c2), (c5, c5)⟩ from NS3 to s2.

Table Construction In order to compute the FT table,
we adapt the CSA algorithm to compute the optimal jour-
neys from each neighbourhood station in NS , to each sta-
tion in S. The pseudo-code of our algorithm is presented
in Algorithm 1. To begin, the algorithm initialises an empty
|NS| × |S| FT table. Next, the algorithm iterates through
each neighbourhood station NSo ∈ NS to compute the row
FT [NSo] in the FT table (line 1).

In each iteration, the algorithm examines each connection
ci departing from NSo and runs a modified CSA starting
from ci (lines 2-3). The modified CSA functions similarly
to before, with two key changes: (i) since the earliest arrival
time at every stop pj ∈ P has to be computed, the scan prop-
agates through the connections in C and can not be pruned
before reaching a connection ck with τdep ≥ τEAmax, where
τEAmax is the latest tentative arrival time at all stops in

5

Algorithm 1: Computing First Transfer Table
Input: TB: the timetable of public transport network.
Output: FT : the first transfer table of TB.
Initialisation: FT : an empty |NS| × |S| table.

1 for each station NSo ∈ NS do
2 for each connection ci ∈ NSo do
3 R = modifiedCSA(pdep(ci),τdep(ci));
4 for each station sd ∈ S do
5 (c∗arr, τ

∗
EA) = getMinEarliestArrival(sd, R);

6 tci(sd) = (ci, c
∗
arr);

7 if tci(sd) ̸= ∅ then
8 FT [NSo][sd]← append(tci(sd), τEA);
9 for each station sd ∈ S do

10 sort FT [NSo][sd] in increasing order of τEA;
11 remove τEA of each label from FT [NSo][sd];
12 return FT ;

P ; and (ii) it returns an array of tuples R, where each tu-
ple (carr, τEA) corresponds to the arrival connection of the
first transfer connection and the earliest arrival time, respec-
tively, for each stop pj ∈ P . To determine carr for a stop
pj , the trip of the connection ck that updates τEA at pj is
checked with the initial trip t(ci). If they are the same (i.e.,
t(ck) = t(ci)), then carr is set to ck (no transfer required
to get to pj). Otherwise, it is set to carr of the departure
stop pdep(ck) (a transfer is required). The algorithm then
processes the returned array R to identify the first trans-
fer connection for each destination station sd ∈ S. Specifi-
cally, the algorithm checks the tuples of all stops in sd, and
find the tuple (c∗arr, τ

∗
EA) with the minimum (earliest) τEA

(lines 4-5). Next, the first transfer connection for sd can be
formed as tci(sd) = (ci, c

∗
arr) (line 6). Note that the com-

puted tci(sd) can be empty, indicating that the optimal jour-
ney to sd is reached by a footpath. In this case, we avoid
storing the empty tci and instead handle this situation dur-
ing the query phase. For the first transfer connection tci(sd)
that is not empty, the algorithm appends (tci, τEA) to the
cell FT [NSo][sd] in the FT table (lines 7-8).

Once the algorithm finishes examining all connections de-
parting from NSo, it proceeds to sort the labels (tci, τEA) of
each cell FT [NSo][sd] based on the increasing order of the
earliest arrival time τEA and then removes τEA accordingly
(lines 9-11). Finally, the algorithm continues the iterations
to process the next neighbourhood station. When all neigh-
bourhood stations in NS have been processed, the algorithm
concludes and returns the first transfer table FT (line 12).
Note that due to the independence of each row FT [NSo],
the construction of the FT table can be efficiently paral-
lelised, with a potential speedup proportional to the number
of processors available in the machine.

Online Query Processing
With the precomputed FT table built in hand, we can ex-
tract optimal journeys efficiently. Given an EAT query q =
(so, sd, τq), Algorithm 2 is called to extract the first trans-
fer connection tc = (cdep, carr) from the neighbourhood
station that so belongs to towards sd, considering departure
time τq . Once tc is extracted, the next extraction follows im-

Algorithm 2: Extracting First Transfer Connection
Input: TB: timetable of public transport network; FT : first

transfer table of TB; Pcur: set of departure stops; τcur:
departure time from any stop in Pcur; sd: destination
station.

Output: tc: the next optimal transfer connection to sd.
Initialisation: tcn = ∅.

1 NS = neighbourhood station of Pcur;
2 for each (cdep, carr) ∈ FT [NS][sd] in sequence do
3 if τcur ≤ τdep(cdep) then
4 if pdep(cdep) ∈ Pcur then
5 tcn = (cdep, carr) and break;
6 else
7 ftr = min footpath from Pcur to pdep(cdep);
8 if τcurr + δτ(ftr) ≤ τdep then
9 tcn = (cdep, carr) and break;

10 if sd is within the same NS then
11 ftr = min footpath from Pcur to sd;
12 if τcur + δτ(ftr) ≤ τarr(carr(tcn)) then
13 return sd;
14 return tcn;

mediately using the arrival stop parr(carr) and arrival time
τarr(carr). The entire journey can thus be extracted as a sim-
ple recursion until an optimal transfer connection reaches sd.
Once the algorithm finishes, each transfer connection is re-
covered to form the complete journey.

First Transfer Connection Extraction To extract a first
transfer connection from the FT table, the algorithm needs
to consider the departure location as (i) a station when de-
parting from so, or (ii) a stop when departing from the ar-
rival stop of the previous transfer connection. To maintain
the generality of the algorithm, the input is taken as a set of
departure stops Pcur, within a station. The pseudo-code of
our algorithm is shown in Algorithm 2. To begin, the algo-
rithm initialises the next transfer connection tcn as empty
and finds the neighbourhood station NS that contains the
departure stops Pcur (line 1). Next, the algorithm scans the
(presorted) transfer connections of FT [NS][sd] in increas-
ing order of their arrival time at sd to find the first reach-
able transfer connection (line 2). For each transfer connec-
tion (cdep, carr), the algorithm first checks whether its de-
parture time is no earlier than the current time τcur (line 3).
If not, the algorithm simply skips it. Otherwise, the transfer
connection can be potentially reached on time, and the algo-
rithm further checks if the departure stop pdep(cdep) belongs
to Pcur (line 4). If this is the case, the transfer connection can
always be reached by waiting, and the algorithm sets tcn
accordingly, then breaks (line 5). Otherwise, the algorithm
finds the shortest footpath ftr from the stops in Pcur to the
departure stop pdep(cdep), and checks whether the transfer
connection can be reached on time via ftr (lines 6-8). If pos-
sible, the algorithm sets tcn to the transfer connection and
breaks (line 9), otherwise the transfer connection is skipped.

Recall that the FT table does not store any transfer con-
nection when the destination is optimally reached via a foot-
path. Therefore, before returning tcn, the algorithm has to
check whether there exists a footpath from Pcur arriving at

6

sd before the transfer connection tcn. Particularly, the algo-
rithm first checks whether sd is within the same neighbour-
hood station NS (line 10). If so, the shortest footpath from
Pcur to sd is found and checked whether it can lead to reach-
ing sd earlier compared to tcn (lines 11-12). In such case, the
algorithm returns a dummy transfer connection sd, indicat-
ing that the next transfer connection is to directly reach sd
by a footpath (line 13). Alternatively, the transfer connection
tcn extracted from FT is returned (line 14).
Theorem 1. Given an EAT query q = (so, sd, τq), the op-
timal journey can be obtained by recursively extracting the
first transfer connections using Algorithm 2.

Proof. (Sketch) The correctness of the algorithm is en-
sured by the way the FT table is constructed. According to
Lemma 1, all connections are considered as potential depar-
tures. In addition, Algorithm 2 clearly considers all possible
scenarios to reach sd as early as possible, whether by public
transport connections or walking footpaths.

Example 2. Given a query q = (s2, s5, 8:30) in our net-
work (Figure 2), the precomputed FT table (Table 1) is used
to find the optimal journey J solving q. Initially, the algo-
rithm needs to extract the first reachable transfer connection
from the neighbourhood to which s2 belongs, NS1, towards
s5 by evaluating labels in FT [NS1][s5]. The first transfer
connection that has departure time τdep ≥ 8:30 is (c7, c8).
Since c7 departs from the origin station s2, it can always be
reached by waiting. The arrival connection c8 reaches stop
p8 at 8:55. As no footpaths exist from s2 to s5, this trans-
fer connection is safely added to J = ⟨(c7, c8), . . .⟩. For the
next extraction, the algorithm checks FT [NS3][s5] as p8 be-
longs to NS3. Following the same procedure, the first reach-
able transfer connection with τdep ≥ 8:55 is (c11, c11). As
c11 does not depart from the current stop p8, the algorithm
checks if pdep(c11) can be reached on time. Since the trans-
fer time from p8 to p7 is respected (8:55+ 0:03 ≤ 9:00), c11
can be accessed, arriving at stop p9 at 9:05. However, a foot-
path from p8 in s4 to p9 in s5 exists, resulting in an arrival
time of 8:55 + 0:09 = 9:04, earlier than 9:05 achieved by
the transfer connection. Thus, a dummy transfer connection
is appended to J = ⟨(c7, c8), s5⟩. Finally, as s5 is reached,
the algorithm terminates, and J is recovered and returned.

Optimisations
We introduce optimisation techniques to improve the effi-
ciency of query processing. These techniques focus on re-
ducing the number and size of labels stored in the FT table
without affecting the optimality of the solutions.

Dominance Check Recall that in each cell FT [NSo][sd],
the optimal first transfer connection from each departure
event from NSo to sd is recorded. While each first trans-
fer connection represents an optimal journey with respect to
its departure connection, there may still be cases where such
a journey is dominated by the optimal journey of another
departure connection. This implies that departing from the
dominated connection always results in a later arrival. To ad-
dress this issue, we explore the following lemma to identify
and remove the dominated transfer connections.

Lemma 2. Let (tci, τEAi) and (tcj , τEAj) be two transfer
connections that depart from NSo with their earliest arrival
time at sd. The transfer connection (tci, τEAi

) dominates
(tcj , τEAj

) iff (i) tci departs no earlier than tcj , allowing
a sufficient time for a feasible transfer from tcj to tci (i.e.,
τdep(tci) ≥ τdep(tcj) + δτ(pdep(tcj)→pdep(tci))); and (ii)
tci arrives at sd no later than tcj , (i.e., τEAi

≤ τEAj
).

Due to the triangle inequality, Lemma 2 holds. We omit
the details of the proof. To eliminate the dominated trans-
fer connections within each cell FT [NSo][sd], we conduct
dominance checks during the preprocessing phase (Algo-
rithm 1). Recall that to execute CSA, connections in C must
be sorted in increasing order of their departure times. How-
ever, for a transfer connection tci to dominate another trans-
fer connection tcj , its departure time must be later than that
of tcj (Lemma 2). Therefore, during construction of each
row FT [NSo], we modified the algorithm to access connec-
tions in NSo in reverse order of C (Algorithm 1 - line 2).
Subsequently, for each optimal transfer connection tcj com-
puted for station sd, a dominance check is performed with
each transfer connection tci already in FT [NSo][sd]. Only
if tcj is not dominated by any of these connections, it is ap-
pended to FT [NSo][sd] (Algorithm 1 - lines 7-8).

Example 3. Considering our toy network, the dominated
transfer connections are underlined in the FT table (Table
1). Such transfer connections can be safely removed from
the FT table. Considering the cell FT [NS1][s4], the third
transfer connection tc3 = (c6, c6) with τEA of 9:00 is dom-
inated by the first transfer connection tc1 = (c7, c8) with
τEA of 8:55. This is because tc1 arrives earlier at s4 (8:55
vs. 9:00), departs later (8:35 vs. 8:33), and the difference
between their departure times is no greater than the walking
time between their departure stops (2min vs. 2min).

Transfer Connection Compression In public transport
networks, the optimal journey from a neighbourhood station
NSo to a destination station sd often involves a first trans-
fer (if required) at the same stop, within the same time pe-
riod of the day. Based on this observation, we introduce two
compression techniques to reduce size and number of labels
stored in each cell FT [NSo][sd]. Specifically, we update
the representation of transfer connections from (cdep, carr)
to (cdep, parr), where parr is the arrival stop of carr (i.e.,
parr(carr)). Consequently, the size of each transfer con-
nection can be reduced due to the limited number of stops
in a timetable TB. Each parr can be efficiently stored us-
ing a two-byte integer, while maintaining carr would typi-
cally require four bytes due to the considerably larger num-
ber of connections in TB. With this updated representation,
we can effectively merge consecutive transfer connections
(c0, parr), (c1, parr), . . . , (cn, parr) sharing the same arrival
stop, into a single label ((c0, c1, . . . , cn), parr), to eliminate
the redundant storage of multiple parr values. While simple,
we later showcase the effectiveness of these techniques.

Experiments
We evaluate our algorithm, Transfer Connection Database
(TCD), against our implementation of Connection Scan

7

Algorithm (CSA) (Dibbelt et al. 2018). Additionally, we
compare the performance with another state-of-the-art al-
gorithm, Round-bAsed Public Transit Optimized Router
(RAPTOR) (Delling, Pajor, and Werneck 2015). To the best
of our knowledge, CSA and RAPTOR represent the state-of-
the-art algorithms for solving the earliest arrival time prob-
lem. While more recent works in the general area exist, in-
cluding (Potthoff and Sauer 2022; Lehoux-Lebacque and
Loiodice 2021; Delling, Dibbelt, and Pajor 2019; Phan and
Viennot 2019), they all have different focuses, such as con-
sidering multiple modalities or dynamic changes. According
to the results of these works, such extensions and enhance-
ments come at the cost of reduced performance compared
to our benchmarks. Therefore, we focus on CSA and RAP-
TOR for our static earliest arrival time problem. Similar to
CSA, RAPTOR is an online algorithm that directly operates
on the timetable, rather than a graph. It inherently optimises
both earliest arrival time and number of transfers. RAPTOR
is centred around modelling routes, which are then traversed
in rounds to efficiently update arrival times at stops and solve
queries. The implementation of RAPTOR is taken from a
public repository2. For the reproducibility, the implementa-
tion of our algorithm is available online3. All experiments
were implemented in C++17 with full optimisation on a 3.20
GHz Apple M1 machine with 16 GB of RAM, running ma-
cOS Ventura 13.4, and utilizing a single thread.
Datasets Three large metropolitan networks, namely Berlin,
Paris, and London, are considered with all available pub-
lic transport modes, including trains, subways, trams, buses,
and ferries. The first dataset is based on open data made
available by the service provider4. The other two datasets
are sourced from (Phan and Viennot 2019). Each network
is based on a weekday timetable. Table 2 summarises the
main attributes for each dataset. To model the transfers, a
conservative walking speed of 1m/s is used to compute the
required walking time. Initially, a footpath is constructed be-
tween every two stops within each station considering exact
transfer times. In addition, we include footpaths between the
stops of a station pair if the two stations fall within a prede-
fined radius r from each other. Finally, additional footpaths
are introduced to make the transfer graph transitively closed.
A wide range of values can be used for r. Setting r = 0
potentially results in unsolvable queries since walking be-
tween stations is disallowed. On the other hand, choosing a
large value (e.g., r = 800m) leads to the extensive addition
of footpaths connecting far-apart stations, which is unlikely
to significantly improve travel time savings. For our experi-
ments, we set r to 250m.
Query Generation We generated a sample of 5,000 station
pairs chosen uniformly at random for each dataset. Eight
fixed departure times evenly spaced across the day (from 3
am to midnight) were assigned for these station pairs.

Experiment 1: Transfer Model Impact To evaluate the
impact of different transfer models, we compare our exact
transfer model with the inter-station transfer model widely

2https://github.com/ducminh-phan/RAPTOR
3https://github.com/abdallah-abuaisha/TCD
4https://www.vbb.de/vbb-services/api-open-data/datensaetze

Dataset Stations Stops Conns. Trips Footpaths N’hoods.
Berlin 3,365 8,359 1,006 42,518 45,553 2,598
Paris 6,263 12,047 1,836 78,757 148,844 3,055
London 9,798 14,516 3,089 87,898 162,543 4,414

Table 2: Main attributes of the test datasets, where Conns. is
connections (x103) and N’hoods. is neighbourhoods

used in existing literature. This model employs uniform
transfer times both within and between stations. Two vari-
ants are derived from this model, one utilising the maximum
transfer times within and between stations from our exact
transfer model (denoted as max model), and the other utilis-
ing the minimum transfer times (denoted as min model). For
the max model, users may receive a feasible yet suboptimal
journey leading to delays. Conversely, the min model may
return an infeasible journey due to violation of actual trans-
fer times. In this case, we assume that users would attempt to
replan their journey at each infeasible transfer, often leading
to cumulative delays. Figure 3 illustrates the median delays
associated with the impacted queries in both the min and
max models, compared to our extract transfer model. The x-
axis represents the various departure times throughout a day.
From the figure, it becomes evident that both the min and
max models lead to considerable delays. The delays in the
min model are notably more pronounced across all times,
due to the cumulative transfer effects discussed earlier. In-
terestingly, we also note that the delays during peak periods
(i.e., 6 am - 6 pm) align consistently for both min and max
model, with a prevalent delay of 5 minutes in the max model
and 10-15 minutes in the min model. In contrast, during off-
peak periods (i.e, 3 am, 9 pm, and 12 am), a notable increase
is observed in the min model, with delays reaching 20-30
minutes in Berlin and Paris, and to a lesser extent in London.
Lastly, the values shown on each line indicates the percent-
ages of impacted queries. It is evident that, in the absence of
implementing an exact transfer model, a substantial portion
of queries could encounter delays, averaging around 45% in
Berlin and Paris and 26% in London.

Experiment 2: Preprocessing Cost A summary of the
preprocessing phase undertaken for each instance is pre-
sented in Table 3. This includes the oracle size in gigabytes,
preprocessing time in minutes, compression percentage, and
number of labels per OD pair, considering different combi-
nations of the optimisations Transfer Connection Compres-
sion (TCC) and Dominance check (Dom.). The latter signifi-
cantly reduces oracle size by 68-76%. When combined with
the TCC technique, an overall compression of 79-85% is
achieved across all instances, with a growing rate for larger
instances. Notably, these optimisations incur negligible time
overhead. The number of labels per OD pair is considerably
decreased in all instances, allowing for faster query times.
Note that the offline phase can be easily parallelised, lead-
ing to a substantial reduction in preprocessing time.

Experiment 3: Runtime Comparison In Figure 4, we
compare the average query processing time for our algo-
rithm, TCD, with that of the competitors, CSA and RAP-

8

Figure 3: Delays of inter-station models compared to exact model for affected queries (percentage shown) across the day

Figure 4: Query performance comparison throughout the day

Dataset TCC Dom. Size %Comp. Time # OD labels
Berlin - - 25.4 - 8 362
Berlin - 18.5 27% 8 332
Berlin - 8.1 68% 8 116
Berlin 5.2 79% 8 68
Paris - - 88.0 - 32 575
Paris - 64.4 27% 32 533
Paris - 24.4 72% 33 160
Paris 16.0 82% 33 99
London - - 223.8 - 111 647
London - 159.2 29% 111 547
London - 53.5 76% 113 155
London 34.2 85% 113 86

Table 3: Preprocessing figures for different optimisation
combinations, with Size in gigabytes and Time in minutes

TOR. The results demonstrate that TCD consistently out-
performs both algorithms throughout all times of the day,
achieving a speedup of two to three orders of magnitude.
The average runtime for TCD is 1.5, 3.2, and 6.7 microsec-
onds in the instances of Berlin, Paris, and London, respec-
tively. A key factor contributing to the superior performance
of our algorithm is the utilisation of transfer connections.
This strategic implementation results in our TCD algorithm
requiring extraction of only a notably limited number of la-
bels from the oracle. In the cases of Berlin, Paris, and Lon-
don, the average count of extracted transfer connections per
query stands at 3.7, 4.1, and 6.3, respectively.

Discussion In this paper, we focus on addressing the jour-
ney planning problem at an urban and metropolitan net-
work scale. Concerning preprocessing costs, we demon-
strate that our proposed database-driven approach, TCD, can
efficiently construct within a reasonable timeframe and com-
fortably fits into memory. While we acknowledge that pre-
processing time and space demands may increase quadrati-
cally for significantly larger networks with tens or hundreds
of millions of connections, such scales fall outside the scope
of our metropolitan focus. Regarding query performance, we
showcase that TCD outperforms two competing algorithms,
CSA and RAPTOR. There are other state-of-the-art algo-
rithms in the area, such as TB (Witt 2015) and TP (Bast
et al. 2010). However, TCD is a single-criteria algorithm op-
timising earliest arrival time, whereas TP and TB are multi-
criteria algorithms optimising both earliest arrival time and
minimum number of transfers. In addition, according to their
experimental analysis, TB and TP are only several factors
faster than RAPTOR. In our results, we show that TCD is
around three orders of magnitude faster than RAPTOR.

Conclusion and Future Work
We have presented an efficient solution to the earliest arrival
time problem, integrating exact transfer costs and leveraging
a well-structured transfer connection database. The signifi-
cance of employing exact transfer models has been demon-
strated. Our future work involves extending TCD to address
additional aspects, such as the multicriteria problem, and en-
hancing the compression of the database even further.

9

Acknowledgments
This work is partially funded by The Australian Research
Council (ARC) under grant DP190100013.

References
Abraham, I.; Delling, D.; Goldberg, A. V.; and Werneck,
R. F. 2011. A hub-based labeling algorithm for shortest
paths in road networks. In International Symposium on Ex-
perimental Algorithms, volume 6630 of Lecture Notes in
Computer Science, 230–241. Springer.
Bast, H.; Carlsson, E.; Eigenwillig, A.; Geisberger, R.; Har-
relson, C.; Raychev, V.; and Viger, F. 2010. Fast Routing in
Very Large Public Transportation Networks Using Transfer
Patterns. ESA (1), 6346: 290–301.
Botea, A. 2011. Ultra-fast optimal pathfinding without run-
time search. In Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment,
volume 7, 122–127.
Botea, A.; and Harabor, D. 2013. Path planning with com-
pressed all-pairs shortest paths data. In Twenty-Third Inter-
national Conference on Automated Planning and Schedul-
ing.
Delling, D.; Dibbelt, J.; and Pajor, T. 2019. Fast and ex-
act public transit routing with restricted pareto sets. In 2019
Proceedings of the Twenty-First Workshop on Algorithm En-
gineering and Experiments (ALENEX), 54–65. SIAM.
Delling, D.; Dibbelt, J.; Pajor, T.; Wagner, D.; and Werneck,
R. F. 2013. Computing multimodal journeys in practice. In
International Symposium on Experimental Algorithms, 260–
271. Springer.
Delling, D.; Dibbelt, J.; Pajor, T.; and Werneck, R. F. 2015.
Public transit labeling. In Experimental Algorithms: 14th In-
ternational Symposium, SEA 2015, Paris, France, June 29–
July 1, 2015, Proceedings 14, 273–285. Springer.
Delling, D.; Pajor, T.; and Werneck, R. F. 2015. Round-
based public transit routing. Transportation Science, 49(3):
591–604.
Dibbelt, J.; Pajor, T.; Strasser, B.; and Wagner, D. 2018.
Connection scan algorithm. Journal of Experimental Algo-
rithmics (JEA), 23: 1–56.
Geisberger, R. 2010. Contraction of timetable networks with
realistic transfers. In Experimental Algorithms: 9th Interna-
tional Symposium, SEA 2010, Ischia Island, Naples, Italy,
May 20-22, 2010. Proceedings 9, 71–82. Springer.
Giannakopoulou, K.; Paraskevopoulos, A.; and Zaroliagis,
C. 2019. Multimodal dynamic journey-planning. Algo-
rithms, 12(10): 213.
Lehoux-Lebacque, V.; and Loiodice, C. 2021. Transfer Cus-
tomization with the Trip-Based Public Transit Routing Al-
gorithm. In 21st Symposium on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems (AT-
MOS 2021). Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik.
Phan, D.-M.; and Viennot, L. 2019. Fast public transit rout-
ing with unrestricted walking through hub labeling. In Inter-
national Symposium on Experimental Algorithms, 237–247.
Springer.

Potthoff, M.; and Sauer, J. 2022. Efficient Algorithms for
Fully Multimodal Journey Planning. In 22nd Symposium on
Algorithmic Approaches for Transportation Modelling, Op-
timization, and Systems (ATMOS 2022). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik.
Samet, H.; Sankaranarayanan, J.; and Alborzi, H. 2008.
Scalable network distance browsing in spatial databases. In
Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2008, Vancouver, BC,
Canada, June 10-12, 2008, 43–54. ACM.
Shen, B.; Cheema, M. A.; Harabor, D. D.; and Stuckey, P. J.
2021. Contracting and compressing shortest path databases.
In Proceedings of the International Conference on Auto-
mated Planning and Scheduling, volume 31, 322–330.
Witt, S. 2015. Trip-based public transit routing. In
Algorithms-ESA 2015: 23rd Annual European Symposium,
Patras, Greece, September 14-16, 2015, Proceedings, 1025–
1036. Springer.

10

