
A Fast Exact Algorithm for the Resource Constrained Shortest Path Problem

Saman Ahmadi,1,2 Guido Tack,1 Daniel Harabor,1 Philip Kilby2

1 Monash University, Australia
2 CSIRO Data61, Australia

{saman.ahmadi, guido.tack, daniel.harabor}@monash.edu, philip.kilby@data61.csiro.au

Abstract

Resource constrained path finding is a well studied topic
in AI, with real-world applications in different areas such
as transportation and robotics. This paper introduces several
heuristics in the resource constrained path finding context
that significantly improve the algorithmic performance of the
initialisation phase and the core search. We implement our
heuristics on top of a bidirectional A* algorithm and evalu-
ate them on a set of large instances. The experimental results
show that, for the first time in the context of constrained path
finding, our fast and enhanced algorithm can solve all of the
benchmark instances to optimality, and compared to the state
of the art algorithms, it can improve existing runtimes by up
to four orders of magnitude on large-size network graphs.

Introduction
The Resource Constrained Shortest Path Problem (RCSPP)
is a well-known NP-hard problem (Handler and Zang 1980).
It has important real-world applications in diverse areas such
as robotics, transportation and game development. The solu-
tion to a RCSPP is a minimum-cost path that consumes a
limited amount of resources. Typical examples are finding
a shortest distance path between two locations which can
be traversed within a fixed time limit, or the quickest path
between two locations within a certain energy budget. For-
mally, given a directed graph G with nodes V and arcs A,
the task is to find a minimum-cost path p from source ∈ V
to target ∈ V such that

∑
(i,j)∈p rij ≤ R where rij is the

resource usage of the arc between node i and node j and R
is the given upper bound on the total resource consumption.

A summary of works on traditional approaches to the
RCSPP and its elementary counterpart (when cycles also
need to be handled) such as path ranking (Santos, Coutinho-
Rodrigues, and Current 2007) and dynamic programming
(Righini and Salani 2008) was presented by Pugliese and
Guerriero (2013). Extensions to these approaches can also
be found in the recent literature. Lozano and Medaglia
(2013) implemented a dynamic programming solution
which explores the graph using a depth-first search (DFS)
scheme. In their Pulse algorithm, the search is redirected if
the current partial path looks unpromising by using three

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

pruning strategies. The Pulse algorithm has been shown to
outperform the Lagrangian Relaxation algorithm of Santos,
Coutinho-Rodrigues, and Current (2007) and the Label Set-
ting algorithm of Zhu and Wilhelm (2012) on small-size in-
stances. Given the pruning strategies introduced by Lozano
and Medaglia (2013), Sedeño-Noda and Alonso-Rodrı́guez
(2015) presented an exact path ranking approach based on
the K-Shortest Paths (K-SP) algorithm to solve the RCSPP
in large networks. Their results show that K-SP outperforms
Pulse on several instances.

Thomas, Calogiuri, and Hewitt (2019) adapted bidirec-
tional A* search to the RCSPP (RC-BDA*). Their algorithm
integrated the pruning strategies of Lozano and Medaglia
(2013) and was compared with Pulse and K-SP on the same
instances of Sedeño-Noda and Alonso-Rodrı́guez (2015).
The results show a runtime improvement over some dif-
ficult instances, but the algorithm is not competitive with
Pulse and K-SP on many simple instances. Another recent
work in the RCSPP context is the bidirectional version of
the Pulse algorithm (Cabrera et al. 2020). Their bidirectional
Pulse (Bi-Pulse) is practically a combination of the DFS and
the breadth-first search (BFS) strategy which recursively ex-
plores the graph in both directions. The experimental results
of their study show that the parallel implementation of the
Bi-Pulse algorithm delivers better performance compared
to the normal Pulse algorithm and RC-BDA* on relatively
small-size instances, but still fails to find optimal solutions
for several large-size instances even with a large time limit.

Contribution In this paper, we present an enhanced bidi-
rectional A* algorithm for the RCSPP and introduce several
heuristics for the initialisation phase and the main search
of the algorithm that can together significantly improve its
algorithmic performance. We design our Enhanced Biased
Bidirectional A* (RC-EBBA*) algorithm on top of the basic
bidirectional A* search from the literature and evaluate it un-
der a set of 440 benchmark instances. The experiments show
that RC-EBBA* outperforms the state-of-the-art algorithms,
which have already shown good performance on large-scale
instances by one to four orders of magnitude.

Background
Bidirectional A* search was first presented by Pohl (1971).
It runs two individual A* searches (Hart, Nilsson, and



Raphael 1968), one in forward direction (from source to tar-
get) and the one other backwards (from target to source),
using the corresponding heuristics in each direction. In the
RCSPP context, these heuristics are normally obtained by
finding the minimum cost path from the source to every
node v ∈ V , and from every v to the target, as depicted
in Figure 1. In this figure, gf denotes the cost of the shortest
path form the source node to node v in the forward direc-
tion where the resource usage of this path is denoted by rfg .
Analogously, the cost and resource usage of the shortest path
from node v to the target node in the backward direction are
denoted by (gb, rbg). For every partial path p from source to
node v in the direction d ∈ {f, b} with the cost of gd and re-
source consumption of rd, the A* search establishes a lower
bound on the cost of a complete path from source to tar-
get (using partial path p) as fd = gd + gd

′
where gd

′
is

the cost estimate of the complementary path in the reverse
direction d′. Bidirectional A* search tries to find a feasible
and complete minimum cost path by expanding partial paths
showing the lowest overall cost from both directions using
priority queues.
Initial solution: An initial solution for the RCSPP is a re-
source optimum path between source and target. The cost of
this path is an initial upper bound C∗0 on the cost. Therefore,
when the cost of complete paths is concerned, the search can
ignore partial paths with an overall cost greater than the ini-
tial upper bound, i.e. fd > C∗0 .
Infeasible paths: A complete path is infeasible if its re-
source usage exceeds the resource limit. A common method
to identify infeasible partial paths is by estimating the over-
all resource usage of the complete path based on a known
lower bound on the resource consumption of the comple-
mentary path. In the bidirectional scheme, lower bounds on
the resource consumption can be obtained by finding re-
source optimum paths in both directions as shown in Fig-
ure 1. In this figure, in every direction d, rd denotes the
resource usage of a resource optimum path from source to
node v where the cost of this path is denoted by gdr . There-
fore, a partial path can be safely pruned if the estimated re-
source usage of its complete path is greater than the resource
limit, i.e., rd + rd

′
> R where rd

′
is the minimum resource

usage in the reverse direction d′.
Dominated paths: In cases where there is more than one
incoming partial path for a node, the search needs to ignore
expanding partial paths for which there is at least one bet-
ter partial path with a lower cost and resource consumption.
To this end, we say the partial path p1 is dominated by p2 if
gd1 ≥ gd2 and rd1 ≥ rd2 .
Joined paths: In bidirectional search, every partial path to a
node in one direction can be coupled with any of the partial
paths to that node in the reverse direction to make a com-
plete path between source and target. If the resulting joined
path is feasible (its resource consumption is within the re-
source limit), it will be added into the corresponding priority
queue as a complete path. Therefore, the algorithm can stop
the search and return the minimum cost path as soon as a
complete joined path is going to be expanded.

vs t
(gf , rfg )

(gfr , r
f )

(gf , rf )

(gb, rbg)

(gbr, r
b)

(gb, rb)

Figure 1: Schematic of partial paths in both directions.

Enhanced Biased Bidirectional A* for the
Resource Constrained Shortest Path Problem

We now introduce our contributions to the RCSPP by pre-
senting new heuristics and strategies which together make
our Enhanced Biased Bidirectional A* (RC-EBBA*) the
fastest available algorithm for solving the RCSPP. We first
describe our improvements to the initialisation phase, fol-
lowed by our contributions to the main search.

Initialisation of RC-EBBA*
Classic algorithms for the RCSPP need to know lower
bounds on both cost and resource to be able to effectively
prune unpromising partial paths by checking them against
the corresponding upper limits. In this section, we show
how to improve the search for lower bounds, and that there
are several interesting heuristics that can be directly derived
from this important phase.
Faster approach: A common method to obtain
cost/resource lower bounds is running the one-to-all
version of Dijkstra’s algorithm on cost/resource prior to the
main search of the RCSPP. Therefore, the execution time
of the initialisation phase of the RCSPP is at least the time
needed to run two one-to-all searches (one on cost and one
on resource). For bidirectional search, initialisation phase
would need to run an additional two one-to-all searches in
the reverse direction. This approach can cause inefficiencies
in practice, especially for easy instances on large graphs.
We now show that the conventional initialisation phase of
the RCSPP can be replaced with faster techniques such as a
bounded version of Dijkstra’s algorithm or bounded A* if
an admissible heuristic exists.
Lemma 1 The distance-bounded version of the Dijkstra’s
algorithm or distance-bounded A* with an admissible
heuristic can be used to obtain the necessary lower bounds
for the RCSPP.
Proof Sketch: Given R and C∗0 as resource and cost limits
respectively, we know that the main search of the RCSPP
will prune all paths with a cost/resource consumption
greater than the corresponding upper bound. Using the
natural property of Dijkstra’s algorithm that nodes are
expanded based on their minimum distance to the source,
we can simply stop the search on a node for which the
minimum distance is observed to be greater than the given
cost/resource limit. In other words, nodes with a minimum
distance greater than the upper limit can not be in a feasible
solution path and, therefore, will not be explored in the
RCSPP search. This analysis can be extended to A* with
admissible heuristics as shown in Figure 2. Analogously,



s
v

t

u
uppe

r bou
nd

Figure 2: Schematic of nodes inside/outside of the upper bound.

since A* is guaranteed to find an optimal solution and
nodes are expanded based on their estimated distance to
target, we can stop the A* search on the first node with an
f-value larger than the given upper limit, knowing that the
unexpanded nodes would violate the cost/resource limit if
they were located on the solution path. �

Better quality heuristics: Our bounded search approach en-
ables us to potentially remove unexpanded nodes from the
RCSPP search space: Nodes that have not been expanded
in any of our searches in the initialisation phase, either on
cost or resource, are guaranteed not to be on the solution
path. Now we present a new procedure which can signif-
icantly improve the quality of cost/resource lower bounds.
Let us assume that we first perform a bounded search on re-
source and V ′ ⊆ V is the subset of nodes expanded during
this search. Using the main property of our bounded search,
since the unexpanded nodes in {V − V ′} are not part of the
solution path, we can now run our second search on cost just
using the resource-valid nodes in V ′. Therefore, as our sec-
ond bounded search explores a smaller set of nodes, it even-
tually gives us better quality heuristics on cost compared to
the base case where all of the nodes in V are explored. Fur-
thermore, let us assume V ′′ ⊆ V ′ is the subset of nodes our
second bounded search expands. Our main search for the
RCSPP now only needs to explore nodes in V ′′, which have
already been shown to have a cost/resource heuristic within
the upper bounds. If we prefer to improve the quality of the
resource heuristic, rather than the cost heuristic, we can sim-
ply change the order of our searches on cost and resource.
More informed A*: When running the initialisation phase
for the bidirectional search, one of our bounded A* can ben-
efit from the result of its counterpart in the reverse direction.
For example, if the first bounded A* search has been done on
cost in the backward direction, our next bounded A* search
on cost in the forward direction can use a more informed
heuristic based on the minimum costs obtained in the back-
ward direction. This technique will help us to speed up our
complementary search in the reverse direction and also em-
powers our bounded search by invalidating more nodes in
the corresponding cost/resource search.
Better initial solutions: In cases where the cost of the re-
source optimum path is known as C∗0 , the RCSPP search
will try to close the gap between the minimum cost (feasi-
ble solution) and the upper bound. Now we argue that this
gap can be shrunk or even closed altogether during the ini-
tialisation phase if a bidirectional search is performed. Let
us assume that we have completed our first bounded search
on resource in the backward direction. During our comple-
mentary search in the forward direction on resource, since

s t
uppe

r bou
nd

Figure 3: Schematic of an unbalanced node distribution.

the resource-optimum paths from every valid node to target
are known (via the backward search), we can join resource-
optimum paths to nodes in the forward direction with their
counterpart in the backward direction to make feasible com-
plete source-target paths. Then, if the cost of the resulting
path is better than our initial C∗0 , we can simply update our
initial solution with our new feasible path. Given the idea of
coupling optimum partial paths, we can extend this strategy
to our bounded searches in the initialisation phase. During
a node’s expansion in each bounded search, we try to find
better initial solutions by creating complete paths using the
node’s information in the reverse direction. This means we
can even join a cost-optimum partial path with a resource-
optimum partial path in the reverse direction as shown in
Figure 1. If the resulting path is feasible and its overall cost
is less than the cost of our best known solution in C∗0 , we
can again update our cost upper bound accordingly.
Setting up the main search: Our final contribution to the
RCSPP initialisation phase is related to its ability to set up
the main search if the bidirectional approach is used. The
last bounded search of our initialisation procedure produces
information on the closeness of valid nodes to source and
target, that is for every node v ∈ V ′′, the minimum costs to
both source and target are known. Using this important ob-
servation, we will estimate the distribution of nodes around
the source and target, which allows us to bias our bidirec-
tional search for the RCSPP. As an example, Figure 3 shows
a case where there are more nodes around the target than the
source. In this situation, we will bias our bidirectional search
by setting a resource budget share in each direction. This
means, instead of allocating an equal budget to searches in
both directions (half of the budget, or R/2, for each direc-
tion), we shift the default budget border and allocate more
budget to the search in the forward direction. We measure
the closeness of nodes to source or target by comparing their
minimum costs to the two endpoints, i.e., gb and gf . For ex-
ample, if nodes are generally closer to the target, they have
a smaller overall cost to the target than to the source. We
therefore define our budget factor for direction d as

βd = 0.5 ∗min

(
2,
∑
v∈V ′′

gd(v)/
∑
v∈V ′′

gd
′
(v)

)
(1)

where d is the direction for which we want to increase the
budget and we have

∑
v∈V ′′ gd(v) >

∑
v∈V ′′ gd

′
(v). To en-

sure the full budget remains accessible, we allocate the rest
of the budget to the reverse direction d′ via βd′

= 1 − βd.
The upper bound of our budget factors is limited to one,
i.e., 0 ≤ βf,d ≤ 1. Therefore, our proposed approach pro-
vides the RCSPP search with a greater degree of flexibility



Algorithm 1 Initialisation Phase of RC-EBBA*
Procedure Initialise (source, target, budget)
1: Backward bounded A* on resource, find the initial C∗0
2: Forward bounded A* on resource, update C∗0 if possible
3: Set V ′= {expanded nodes in the bounded search of step 2}
4: Backward bounded A* on cost and V ′, update C∗0 if possible
5: Forward bounded A* on cost and V ′, update C∗0 if possible
6: Set V ′′= {expanded nodes in the bounded search of step 5}
7: Calculate budget factors βf and βb using nodes in V ′′

8: return (C∗0 , βf , βb)

by biasing the bidirectional search. In the extreme case, this
may turn the bidirectional search into a unidirectional search
based on the distribution of nodes.

In summary, we present the main steps of our new initial-
isation approach for RC-EBBA* in Algorithm 1.

Our Enhanced Biased Bidirectional A*
This section describes our contributions to the main search
of the RCSPP using an A*-based bidirectional search
scheme as described by Thomas, Calogiuri, and Hewitt
(2019). The pseudocode of our RC-EBBA* search is given
in Algorithm 2. The algorithm starts by calling the initialisa-
tion function and initialising the priority queues in both di-
rections (Qf,b). It then uses the minimum cost path between
source and target (here as a heuristic) to build the first set
of partial paths at both ends and insert them into the corre-
sponding priority queue for backward (Qb) or forward (Qf )
partial paths. We store the main information of each partial
path in a unique label. This information mainly includes the
lower bound on source-target cost (denoted by f ), cost (g),
the resource consumption (r), and the last node (u) of the
partial path. The priority queues process the labels based on
their f-value, that is the most promising partial path is al-
ways placed in front of the queue. The algorithm then tries
to expand the most promising partial path by choosing a di-
rection which offers the smaller f-value among the top labels
of Qf and Qb (denoted by d). After expanding every partial
path, newly generated partial paths are inserted into the cor-
responding priority queue if they meet the feasibility crite-
ria. Finally, the search successfully terminates when a partial
path with a lower bound greater than the best found solution
C∗ is extracted from any of the priority queues. Now we ex-
plain our contributions to the bidirectional A* search for the
RCSPP by highlighting the new features of RC-EBBA*.
Biased bidirectional search: In the RCSPP, as the resource
consumption of the cost-optimum path is limited, the bidi-
rectional search can place a limit on the maximum resource
usage in each direction. This idea was used by Righini and
Salani (2006), and Thomas, Calogiuri, and Hewitt (2019)
adapted this constraint to their bidirectional search by al-
locating an equal resource budget (R/2) to the searches in
both directions. We now extend this strategy and claim that
the resource usage of directions can be limited by any frac-
tion of the budget R.
Lemma 2 The resource budget in each direction of bidirec-
tional A* for the RCSPP can be any fraction of the budget
as long as they together cover the whole range of R.

Algorithm 2 Enhanced Biased Bidirectional A* for RCSPP
Procedure RC-EBBA* (source, target, budget)
1: Set s= source, t = target, R = budget
2: (C∗,βf ,βb) = Initialise (s, t, R)
3: Qf,b ← ∅, rf,bmin(v)←∞ for each v ∈ V ′′
4: labels ← {f : gb(s), g : 0, r : 0, u : s}, Qf .push(labels)

5: labelt ← {f : gf (t), g : 0, r : 0, u : t}, Qb.push(labelt)

6: while Qf ∪Qb 6= ∅ do
7: d← direction of the min-f label from Qf ∪Qb

8: {f, g, r, u} ← label← Qd.pop(), d′ ← reverse (d)
9: if f ≥ C∗ then

10: break
11: else if r ≥ rdmin(u) then
12: continue
13: else
14: rdmin(u)← r
15: end if
16: if r ≤ βdR then
17: for all v ∈ succd(u) do
18: g′ ← g + cost(u, v)
19: r′ ← r + resource(u, v)

20: label′ ← {g′ + gd
′
(v), g′, r′, v}

21: if Feasible(label′, d) then
22: Qd.push(label′)
23: end if
24: end for
25: end if
26: EarlyC*Update(label, d′)
27: if rd

′
(u) > βd′R then

28: continue
29: else
30: for all label′ ∈ expandedd

′
(u) do

31: {f ′, g′, r′, v′} ← label′

32: if g + g′ ≥ C∗ then
33: break
34: else if r + r′ ≤ R then
35: C∗ ← g + g′, break
36: end if
37: end for
38: expandedd(u).pushback(label)
39: end if
40: end while
41: return C∗

Proof Sketch: The bidirectional search matches the partial
paths in both directions in search of the solution path. There-
fore, we just need to show that the solution path is still dis-
coverable using any fraction. Let us assume that we are on
one segment of the solution path with the resource usage R
in direction d and the search decides to not further expand
that partial path at fraction βd. Since there is no limit on
the cost of partial paths in each direction (the solution has
not been found yet), the search in the opposite direction d′
is allowed to expand partial paths up to the budget fraction
of 1 − βd, which also includes the second segment of the
solution path if exists. Therefore, both partial paths of the
solution can meet at the fraction β. �
We use the budget from the initialisation phase (βf,d) to bias
our search as shown at line 16 of Algorithm 2.
Efficient dominance checking: The common approach



for dominance checking is to compare new partial paths
against all of the previous partial paths during the expan-
sion (Thomas, Calogiuri, and Hewitt 2019; Cabrera et al.
2020). In this paper, we extend the fast dominance checking
approach of Ulloa et al. (2020) to our RC-BBDA*. In A*
search, since the f-value of partial paths is monotonically in-
creasing, partial paths can be checked for dominance before
expansion. Let us assume two partial paths of a node with
f2(v) ≥ f1(v) are sequentially extracted from the priority
queue (so f1(v) is extracted first). Since both partial paths
use the same heuristic to establish their f-values, we have
g2(v) ≥ g1(v). Therefore, the second partial path will be
dominated by the first partial path if r2(v) ≥ r1(v). In other
words, to check a partial path for dominance, we just need
to compare its resource usage against the resource consump-
tion of the node’s most recently expanded partial path. This
means, every time we expand a non-dominated partial path
in every direction, we keep track of the (always decreasing)
changes in the node’s minimum resource consumption de-
noted by rdmin(v) as shown at line 14 of Algorithm 2.
Efficient partial paths coupling: An essential step in the
bidirectional search is to check whether the expanded par-
tial path can be matched with any of the partial paths in the
opposite direction to create a feasible solution path. Now we
present two techniques to improve the efficiency of this vital
part of the bidirectional search.
The first technique is equipping the partial paths coupling
strategy with the early termination criteria as shown at lines
32, 34 of Algorithm 2. We use our argument for the efficient
dominance checking and claim that the f-value (and corre-
spondingly cost g) of the expanded partial paths is guaran-
teed to be increasing. That is, if we store expanded partial
paths associated with node v in order, the first/last added la-
bel has the minimum/maximum cost among the partial paths
in the expanded(v) set in direction d. Therefore, the path
coupling procedure is allowed to terminate early as soon as it
finds a feasible solution path (successful matching) or when
it creates a path which is not as good as the best known so-
lution path (unsuccessful matching) since as it goes further
in the labels of the expanded(v) set, the situation gets worse
and the cost of the reverse partial paths increases.
Our second technique helps us to save time and space by
not trying to store/match partial paths for which we are sure
that there will not be a counterpart in the reverse direction
(line 27 of Algorithm 2). Figure 4 depicts a sample scenario
with this situation where the partial path from s to v needs
to have a complementary path (from v to t) with a minimum
resource usage greater than its allowed budget in that direc-
tion and the node is located outside of the expected matching
area (highlighted). Therefore, there is no need to even have
an expanded set for node v, and the path coupling procedure
for the incoming labels with this property can be ignored.
We can also remove such labels after the expansion since
the search will no longer need their information except for
backtracking to construct the solution path.
Stronger feasibility criteria: Our enhanced bidirectional
search is equipped with new pruning strategies as presented
in Algorithm 3. First, labels that are pointing to nodes out-
side of the valid domain V ′′ will be pruned. And second, we

s
v

t

Figure 4: Schematic of a partial path outside of the coupling area.

Algorithm 3 Auxiliary Functions for RC-EBBA*
Procedure Feasible (label′, d)
1: {f ′, g′, r′, v} ← label′

2: if v /∈ V ′′ then
3: return False
4: else if g′ > gdr (v) or r′ > rdg(v) then
5: return False
6: else if f ′ ≥ C∗ or r′ + rd

′
(v) > R then

7: return False
8: else if r ≥ rdmin(v) then
9: return False

10: else
11: return True
12: end if
Procedure EarlyC*Update(label, d′)
1: {f, g, r, u} ← label

2: if f < C∗ and r + rd
′

g (u) ≤ R then
3: C∗ ← f

4: else if g + gd
′

r < C∗ and r + rd
′
≤ R then

5: C∗ ← g + gd
′

r

6: end if
7: return

prune labels carrying a cost/resource usage above the node’s
cost/resource upper bound. This is because there always ex-
ists a dominant path with a lower cost and resource usage for
which we know gd ≤ gd or rd ≤ rd. Thirdly, if the resource
usage of the partial path is greater than the resource usage of
a previously expanded partial path, the label can be pruned.
The idea of this strategy is related to our efficient dominance
checking, but now we never process a label that is guaran-
teed to be dominated by violating rdmin(v).
Early solution update: As an additional heuristic, we use
our improved lower bounds from the initialisation phase to
shrink the gap between the minimum cost and the optimal
solution by searching for a solution path before reaching the
path’s coupling area. This techniques matches every partial
path in direction d with the minimum cost/resource partial
path in the reverse direction as described in Algorithm 3.
If the resulting path is feasible and improves the solution
cost, the search will then update C∗ with the cost of the new
solution path. This procedure helps the algorithm to prune
more infeasible paths by continually updating C∗ even be-
fore coupling partial paths from the expanded set.
Faster queue operations: Our final contribution to the RC-
EBBA* algorithm is to use an efficient priority queue. RC-
SPP algorithms typically use a heap data structure to im-
plement the required priority queues. Since the size of the
queue in the RCSPP instances can become very large (some-
times in the order of V including dominated labels), updates
on priority queues may be inevitably costly. Based on this



observation, we propose to use a fixed-size bucket priority
queue instead, which provides a fast push operation (with-
out any tie breaking). We can use a fixed number of buckets
since the lower and upper bounds of the solution path are
known prior to the main search (g(t) and C∗). As the search
deals with a large number of labels, which all fall within a
limited f -range, we expect the search to see almost all of
the buckets filled and not waste too much of its time going
through empty buckets. Therefore, the overall cost of scan-
ning each bucket queue for pop operations in the worst case
will be O(C∗ − g(t)) which we believe will outperform the
binary heap with O(log(V )) in practice. We will investigate
the performance of both structures in the experiment section.

Experimental Results and Analysis
We compare our RC-EBBA* with existing algorithms that
have shown a good performance on large networks.
Algorithms: The selected algorithms are K-SP (Sedeño-
Noda and Alonso-Rodrı́guez 2015), Pulse (Lozano and
Medaglia 2013), RC-BDA* (Thomas, Calogiuri, and Hewitt
2019) and the recent Bi-Pulse search (Cabrera et al. 2020).
Benchmark instances: Following the recent studies, we
use the benchmark instances of Sedeño-Noda and Alonso-
Rodrı́guez (2015) which have been designed based on a par-
ticular order of nodes over USA road networks in the 9th
DIMACS challenge (DIMACS 2005) as shown in Table 1 in
detail. The constrained problem in these instances is to find
the shortest feasible path for 440 pairs of nodes, subject to
varying time limits as a resource constraint.
Resource budget: Following the literature, we define the
resource budget R based on the tightness of the constraint
p = (R− r(t))/(rg(t)− r(t)) and p ∈ {0.1, 0.2, ..., 0.8}.
Implementation: We used the C implementation of the K-
SP and Pulse algorithms kindly provided to us by Sedeño-
Noda and Alonso-Rodrı́guez (2015). For the RC-BDA* and
Bi-Pulse algorithms, we were unable to obtain the origi-
nal implementations. We therefore implemented both algo-
rithms based on their descriptions. For RC-BDA*, since its
structure is similar to our bidirectional A* search, we sim-
ply disabled the new features of our RC-EBBA* search to
obtain the basic RC-BDA* search. We also fixed a poten-
tial inefficiency in RC-BDA* which is related to its weak
label matching strategy: Instead of inserting all of the ex-
panded partial paths of a direction in a large pool and then
searching for the best match inside the pool (extra effort for
finding the same ending node), we allocated a set (in a form
of linked list) for each node that keeps the partial path cor-
responding to that node, which makes the partial path cou-
pling much more efficient than the original approach in the
algorithm. For the Bi-Pulse algorithm, our single thread im-
plementation with the proposed setting in the paper showed
a very weak performance and ran out of memory in several
cases. Therefore, we decided to report the timings from the
original paper. For that paper, the authors implemented Bi-
Pulse based on a parallel framework in Java and reported
the runtimes using a machine with an Intel Core i7-4610M
at 3.00 GHz and with 8GB of RAM and a four-hour timeout.
We implemented RC-BDA* and RC-EBBA* algorithms in

C++ and compiled all of the algorithms (including K-SP
and Pulse) using the GCC7.4 compiler with O3 optimisa-
tion settings. Our codes are publicly available1. We ran all
of our experiments once on a single core of an Intel Xeon
E5-2660V3 processor running at 2.6 GHz and with 16GB of
RAM, under the SUSE Linux 12.4 environment and a four-
hour timeout. In contrast to Pulse, Bi-Pulse and KS-P, our
implementations of RC-BDA* and RC-EBBA* do not take
any advantage of low-cost successors, i.e., we do not set any
order on expanding nodes’ successors.
Initialisation phase analysis: We assume that the budget
is not known and should be calculated by the constraint
p. Therefore, we first calculate the resource budget R via
two backward A* searches. We then initialise our proposed
bounded searches based on the tightness of the constraint p.
That is, if p < 0.5, we next find resource heuristics and then
reestablish our cost heuristics, otherwise, we rely on our ini-
tial (less informed) cost heuristics obtained during the bud-
get search and resume the initialisation steps as explained
in Algorithm 1. Furthermore, we use Euclidean distance as
an admissible heuristic for our A* searches on DIMACS in-
stances. Table 2 illustrates the performance of our initiali-
sation approach against the existing approaches. First, we
compare the average runtime of each strategy on the bench-
mark instances. For the unidirectional approaches (K-SP and
Pulse), the initialisation phase requires to run one round of
the Dijkstra’s algorithm (one-to-all search from target, col-
umn Uni-Dij.). Bidirectional approaches (RC-BDA* and Bi-
Pulse) though perform two one-to-all searches, from source
and target (column Bi-Dij.). In cases where the shortest path
is feasible (i.e., where gb = gbr), they may terminate early
without running the second set. The average runtime of our
proposed initialisation approach is given in the third column
of Table 2. Although our approach may perform a full bidi-
rectional search in the worst case, our bounded A* search
strategy is even faster than the uni-directional approach in
practice on average over all of the instances. Comparing the
average of total instances, we can see our approach com-
pletes the initialisation phase three times faster than the uni-
directional scheme and six times faster than the bidirectional
scheme. The importance of this phase is revealed when we
look into the runtime of individual instances. For exam-
ple, initialising easy instances of the full USA road net-
work using the normal unidirectional one-to-all search (K-
SP or Pulse) requires at least 15 seconds on our machine,
but our approach just needs 0.001 seconds to initialise those
instances, a speed up of four orders of magnitude.
Table 2 also compares the quality of initial solutions using
different approaches. Since both unidirectional and bidirec-
tional strategies find the same initial solution, we just report
the maximum distance of the initial solutionC∗0 from the op-
timal solution C∗ for the unidirectional scheme, in the form
of ϕ(C∗0 ) = (C∗0 − C∗)/C∗. The results in Table 2 show
that the initial solutions using existing approaches can be as
far as 38.69% off the optimal solution, but as seen in the last
column of Table 2, our proposed strategy to update the initial
solution significantly reduces that gap to at most 4.64% and

1https://bitbucket.org/s-ahmadi/rcsp



Road Network Details RC-EBBA* K-SP RC-BDA* Pulse Bi-Pulse
Inst. Nodes Arcs S. Avg.(s) S. Avg.(s) S. Avg.(s) S. Avg.(s) S. Avg.(s)
NY 264,346 730,100 40 0.066 40 0.419 40 0.576 40 15.539 40 0.23
BAY 321,270 794,830 40 0.078 40 2.361 40 3.941 40 14.857 40 0.30
COL 435,666 1,042,400 40 0.112 40 7.732 40 15.066 36 1446.771 40 1.67
FLA 1,070,376 2,687,902 40 0.423 40 60.801 40 33.428 31 3743.906 40 2.64
NE 1,524,453 3,868,020 40 0.116 40 1.977 40 2.262 38 978.915 40 1.24
CAL 1,890,815 4,630,444 40 11.490 35 2430.943 32 3145.198 28 4330.042 35 1896.19
LKS 2,758,119 6,794,808 40 6.239 40 1354.912 36 1840.397 24 5761.238 36 1727.33
E 3,598,623 8,708,058 40 0.691 40 46.875 38 739.256 30 3652.112 40 13.63
W 6,262,104 15,119,284 40 2.996 40 858.041 31 3410.237 20 7479.830 38 852.61
CTR 14,081,816 33,866,826 40 5.507 40 1155.848 39 981.446 18 8051.855 - -
USA 23,947,347 57,708,624 40 89.993 28 5009.795 24 6293.759 16 8645.876 - -

Overall 440 10.701 423 993.609 400 1496.869 321 4010.995 - -

Table 1: Network details, number of solved cases and the average runtimes of the algorithms (Bi-Pulse runtimes are only for solved cases)

Avg. initialisation time (s) Max. ϕ(C∗0 )(%)
Inst. Uni-Dij. Bi-Dij. Ours Uni-Dij. Ours
NY 0.129 0.268 0.057 38.69 4.64
BAY 0.151 0.309 0.074 12.45 3.40
COL 0.202 0.374 0.085 9.16 1.99
FLA 0.521 1.267 0.324 22.52 1.27
NE 0.859 1.909 0.106 30.83 3.19
CAL 0.969 1.712 0.839 10.49 3.43
LKS 1.432 2.909 0.679 25.99 4.41
E 2.060 4.731 0.480 24.76 2.93
W 3.668 8.712 1.172 25.88 3.42
CTR 11.126 20.825 1.571 11.53 2.85
USA 14.686 38.582 6.175 10.93 3.98

Table 2: Initialisation performance and initial solution quality

even closes the gap in several cases. A good initial solution
will directly help the RCSPP search, since it will be able to
prune more suboptimal paths.
Algorithmic performance: Table 1 presents the experimen-
tal results for all of the algorithms in this study. This table
shows the number of instances solved to optimality (denoted
by S.) and average runtime in seconds including the initial-
isation time and the time needed to calculate the resource
budget R from the constraint p. For unsolved instances (ex-
cept for Bi-Pulse), we generously assume a runtime of four
hours (the time limit). The detailed results can be found in
our source-code repository. Among the competitors, K-SP
shows the best performance, but still fails to solve 17 in-
stances within the time limit. In contrast, our RC-EBBA* al-
gorithm needs less than 11 seconds on average to solve all of
the instances to optimality. Our enhanced algorithm outper-
forms its well-designed competitors in almost all of the test
cases, showing a minimum of one (BAY map) and a max-
imum of four orders of magnitude (CTR map) faster run-
times on average. Compared to Bi-Pulse runtimes, although
they have been reported based on a parallel implementation
using a machine with a notionally faster processor, our sin-
gle thread RC-EBBA* is still superior to Bi-Pulse in term of
the number of solved cases and the average runtimes (note
that we can only report the published runtimes for Bi-Pulse,
which do not count unsolved instances in the averages).

Near-optimal solutions: Our RC-EBBA* algorithm shows
fast performance on easy-to-medium instances and is able
to find the optimal solutions in less than a second on aver-
age. Among all of the large instances, RC-EBBA* solves
the most difficult problem (in the USA instance) in less than
9 minutes. As RC-EBBA* is equipped with an efficient so-
lution update strategy, if near-optimal solutions are also ac-
cepted, the algorithm can return a feasible solution within
1% of the optimal solution of the most difficult problem in
the benchmark instances after 4.5 minutes, two times faster
than its 9-minutes search for the optimal solution.
Bucket vs Heap: We also compared the effect of using
bucket queues versus heaps for implementing RC-EBBA*
on the same benchmark set. Using heaps, RC-EBBA* is still
able to solve all of the instances to optimality in 37 seconds
on average (compared to 10.7 seconds for bucket queues).
Detailed results show that the proposed bucket-based RC-
EBBA* shows a comparable performance (nearly equal) on
easy instances but outperforms heap-based RC-EBBA* on
all of the medium-to-difficult instances. Over all of the test
cases, the RCSPP search is proceeded on average two times
faster if the bucket structure is used. We also noticed bucket
queues required less memory in practice, due to the fact that
labels in buckets do not need to contain the f-values, as re-
quired by heap data structures. The overhead of the fixed
number of buckets is therefore outweighed by the reduced
size in memory of the labels.

Conclusion
This paper presents several improvements for the resource
constrained shortest path problem (RCSPP) by introducing
an enhanced biased bidirectional A* search RC-EBBA*.
Our first set of improvements speed up the initialisation
phase of RC-EBBA* and assist its search engine by provid-
ing better quality heuristics. The second set of improvements
increase the search efficiency and algorithmic performance
of the main search of RC-EBBA*. The results of our exper-
iments on the largest set of instances in the literature show
that, for the first time in the context of the RCSPP, the pro-
posed RC-EBBA* algorithm can solve all of the 440 bench-
mark instances while outperforming the runtime of the state-
of-the-art algorithms by one to four orders of magnitude.



References
Cabrera, N.; Medaglia, A. L.; Lozano, L.; and Duque, D.
2020. An exact bidirectional pulse algorithm for the con-
strained shortest path. Networks 76(2): 128–146. doi:
10.1002/net.21960. URL https://doi.org/10.1002/net.21960.

DIMACS. 2005. 9th DIMACS Implementation Chal-
lenge - Shortest Paths. URL http://users.diag.uniroma1.it/
challenge9.

Handler, G. Y.; and Zang, I. 1980. A dual algorithm for the
constrained shortest path problem. Networks 10(4): 293–
309. doi:10.1002/net.3230100403. URL https://doi.org/10.
1002/net.3230100403.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Trans. Syst. Sci. Cybern. 4(2): 100–107. doi:
10.1109/TSSC.1968.300136. URL https://doi.org/10.1109/
TSSC.1968.300136.

Lozano, L.; and Medaglia, A. L. 2013. On an exact method
for the constrained shortest path problem. Comput. Oper.
Res. 40(1): 378–384. doi:10.1016/j.cor.2012.07.008. URL
https://doi.org/10.1016/j.cor.2012.07.008.

Pohl, I. 1971. Bi-directional search. Machine intelligence 6:
127–140.

Pugliese, L. D. P.; and Guerriero, F. 2013. A survey of re-
source constrained shortest path problems: Exact solution
approaches. Networks 62(3): 183–200. doi:10.1002/net.
21511. URL https://doi.org/10.1002/net.21511.

Righini, G.; and Salani, M. 2006. Symmetry helps: Bounded
bi-directional dynamic programming for the elementary
shortest path problem with resource constraints. Discret.
Optim. 3(3): 255–273. doi:10.1016/j.disopt.2006.05.007.
URL https://doi.org/10.1016/j.disopt.2006.05.007.

Righini, G.; and Salani, M. 2008. New dynamic program-
ming algorithms for the resource constrained elementary
shortest path problem. Networks 51(3): 155–170. doi:
10.1002/net.20212. URL https://doi.org/10.1002/net.20212.

Santos, L.; Coutinho-Rodrigues, J.; and Current, J. R. 2007.
An improved solution algorithm for the constrained shortest
path problem. Transportation Research Part B: Methodolog-
ical 41(7): 756 – 771. ISSN 0191-2615. doi:https://doi.org/
10.1016/j.trb.2006.12.001. URL http://www.sciencedirect.
com/science/article/pii/S0191261507000124.

Sedeño-Noda, A.; and Alonso-Rodrı́guez, S. 2015. An
enhanced K-SP algorithm with pruning strategies to solve
the constrained shortest path problem. Appl. Math. Com-
put. 265: 602–618. doi:10.1016/j.amc.2015.05.109. URL
https://doi.org/10.1016/j.amc.2015.05.109.

Thomas, B. W.; Calogiuri, T.; and Hewitt, M. 2019. An exact
bidirectional A? approach for solving resource-constrained
shortest path problems. Networks 73(2): 187–205. doi:10.
1002/net.21856. URL https://doi.org/10.1002/net.21856.

Ulloa, C. H.; Yeoh, W.; Baier, J. A.; Zhang, H.; Suazo,
L.; and Koenig, S. 2020. A Simple and Fast Bi-Objective
Search Algorithm. In Beck, J. C.; Buffet, O.; Hoffmann, J.;

Karpas, E.; and Sohrabi, S., eds., Proceedings of the Thir-
tieth International Conference on Automated Planning and
Scheduling, Nancy, France, October 26-30, 2020, 143–151.
AAAI Press. URL https://aaai.org/ojs/index.php/ICAPS/
article/view/6655.
Zhu, X.; and Wilhelm, W. E. 2012. A three-stage approach
for the resource-constrained shortest path as a sub-problem
in column generation. Comput. Oper. Res. 39(2): 164–
178. doi:10.1016/j.cor.2011.03.008. URL https://doi.org/
10.1016/j.cor.2011.03.008.


